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We introduce a continuum model to describe the phase separation of a binary alloy in the presence of mobile
dislocations. The kinetics of the local composition and dislocation density are coupled through their elastic
fields. We show both analytically and numerically that mobile dislocations modify the standard spinodal
decomposition process, and lead to several regimes of growth. Depending on the dislocation mobility and
observation time, the phase separation may be accelerated, decelerated, or unaffected by mobile dislocations.
For any finite dislocation mobility, we show that the domain growth rate asymptotically becomes independent
of the dislocation mobility, and is faster than the dislocation-free growth rate.
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Much effort has been devoted to studying the process ofmeasurements at different times may yield different conclu-
phase separation in alloys, motivated by a desire to bettegions on the role of dislocations.
understand this industrially relevant problem, but also to ex- We now introduce our theoretical approach. The binary
plore the basic physics of nonequilibrium phenomena. Mosglloy is described by a continuous compositizn) (relative
theoretical and computational studies of phase separation #@ the average alloy compositipand a continuous Burger’s
alloys have assumed perfect crystallinity of the materialvector densityb(r).** The free energy is written as a sum of
However, real materials are far from this idealized situationthree termsF= F.+ F,+ Feoup- HereF. is the free energy
and usually contain a significant dislocation density. due to the spatially varying composition, given by

Previous theoretical work on the coupling between phase 2
separation and dislocations has already indicated the crucial F :f drl — ECer Ec4+ 8—|Vc|2
role that dislocations play: enhancement of nucleation on ¢ 2 4 2
dislocations; °hardening’ and acceleration of spinodal de- o a=ay(T—T), with T the temperature and, the

composition by discrete, |mmob|!e d|s|ocat|.cﬁf§hese stud- critical temperaturea, and u are positive constants. The
ies have either focused on the time evolution of the compo-

T L X . . dislocation free ener is given b
sition in the presence ddtatic dislocations, or dislocation 9o is g y

, @

motion in a static nonuniform composition. However, a the- a 1

oretical description of the problem allowing for the coupled, ]:b:f dr{§|b|2+ W(Vsz)z}- )
simultaneous time evolution of the composition and disloca-

tion fields is still lacking. The first term in this equation describes the local dislocation

Experimental reports on thermomechanical treatment ofore energy. The second term accounts for the nonlocal elas-
phase separating alloys give an insight on the role of dislotic interactions(i.e., Peach-Koehler forc¥$ between the
cations, as prior cold work increases the dislocation densitydislocations, wher& and x4 denote the Young modulus and
These experiments however have painted a conflicting picAiry stress function due to dislocation strain fields,
ture. Cold work has been found to enhaht®eor reducé®  respectively® Under mechanical equilibrium conditions, the
phase separation, or even leave it unaffected. Airy stress function satisfié% V“Xd:Y(bey—Vbe). Fi-

To address these issues, we present a model for a binanally, the interaction between the composition and the dislo-
alloy phase separating by spinodal decomposition, in theations arises due to the dependence of the lattice constant
presence of mobile dislocations. By coupling the composi-on the compositior,(c)=1,(1+ 7c), and its coupling to the
tion and dislocations through their elastic fields, we showocal compressioV?yy,
that mobile dislocations lead to several growth regimes. As-
ymptotically, the dislocations segregate to compositional in-
terfaces and increase the interface tension. This increased
interface tension causes an acceleration of the phase se - . . : . .
tion compared to the dislocation-free alloy. At ir?termedialc'zzur%e.3 dynamics Of the composition _and dislocation density
times, the dislocations still segregate to interfaces, but thei?atISfy conservation laws and are given by
limited mobility creates a drag on the interfaces which de- Jc SF

fcouplz 77f drCVZXd- (3

celerates the phase separation. At earlier times, there is an- —=I'V?—, (4
other growth regime where the domain growth is unaffected Jt oc
by dislocations, due to a small dislocation density at the in-
; ; b OF
terfaces. Hence, as time proceeds there is a crossover unaf- X_ 2 2
; (TgVi+TeVy) =, (5)
fected — decelerated— accelerated, so that experimental ot oby
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7:(I‘CVX‘Frgvy)(s—by. (6) §
8

In these equationd, is the composition mobility whild"
andI'y are the dislocation mobilities in the climb and glide
directions, respectively. Such evolution equations for the dis-
location densityb have been employed previously in the

context of strain relaxation in heteroepitaxial filffs. 08Fc |
Using the transformations c—(|al/u)¥%c, r 06l 2
—(e2l|a])¥?r, t—(e¥T|al)t, b—(|al®Ys2u)¥%, and " — e
xa— (Ye*lu)¥2y4, we obtain the dimensionless dynamical < 04510 N 1=05 ]
equations o2f 00 02T '
9 _ o R 5 W50 5 o % 0 15
E_V [£c+c®= Vet yVixal, () Distance normal to interface
FIG. 1. Equilibrium profiles foa) the composition field an¢b)
é’_bx_(m v24m V2) the dislocation field. The figures show half the cell in the system
Jt g x ¢y with periodic boundary conditions. The inset(i) shows the inter-

face tension calculated from the equilibrium profiles.

X

! ’ 2
VdeerVyf dr'G(r,r)Vi,c+eby), (8 This expectation can be verified in tHast dislocation

o ) ) limit (m¢ g—c0) by performing a Lifshitz-Slyosov calcula-
a similar equation foe;b, follows from Eq.(8) by replacing oy of the growth of an isolated circular domain at late

bx4_’by’ Vy= =V, and V,——=V,. In the above, (imesl8For the case=0, the domain siz&(t) follows
V. G(r,r')=48(r—r"), and the top(bottom sign in Eq. (7)

is taken forT>T_. (T<T_.). The new dimensionless param- 30(7y) oo )

eters are y=yY"¥[a|'? e=alalle?Y, and m, R¥(t)= ———t=——(1+9)"4, )
_ 2 2 ' [Ac(y)] 4

=T 4e°YIT|al*.

We first discuss the equilibrium profile as a function of WhereAc( 7) is the Composition difference between the in-
the coupling parametey. We take the negative sign in Ed. side and outside of the circular domain. The domains thus
(7) corresponding to an alloy in the two-phase region of thecoarsen faster in the presence of fast dislocations by a factor
phase diagram. To obtain the equilibrium profile for a given(1+ y2)1/2_

y, we start from the known analytical solutioo(x,y) The above arguments suggest that, in the fast dislocation
=tanh/y2) for the composition whery=0, and numeri- limit and at late times, spinodal decomposition is accelerated
cally integrate the coupled Eqs7) and (8) until a steady by dislocations. To verify these predictions, we simulated
state is reachedWe use a finite difference Euler scheme onnumerically the full time evolution of the phase separation.
a uniform two-dimensional grid with periodic boundary con- We integrated numerically the coupled set of dynamical
ditions, grid spacingAx=Ay=1.0, and time stepAt equations, starting from a random initial profile for the com-
=0.05) Figure 1 shows the composition and dislocationposition andb(r)=0. We used the parameters above, with
field b, for different values ofy. The dislocations are local- y=1, m.=my=m, and simulated a 50-50 alloy.

ized at the interface, with a density that increases with We measured the average domain size as a function of
Since the dislocations have a unifofsyp component in the time by mapping the composition field onto an Ising model
direction parallel to the interface arg=0, the dislocation and calculating the total length of interfade&) in the sys-
density at the interface is analogous to a line of discrete edgem; the average domain size is tHeft) =A/L(t), whereA
dislocations(misfit dislocations is the total area of the system. Figure 2 shows the result of

From the equilibrium profiles, we can extract the interfacesuch a calculation averaged over four runs with different
tension in the presence of dislocations, as shown in the institial random fluctuations for systems of size 26856. The
of Fig. 1. Clearly, the interface tension is increased by theaverage domain size for the larger mobilim€5, dashed
presence of dislocationgNote that the total energy of the line) increases faster than the dislocation-free cés®id
system, which scales with area, is reduced by the dislocdine), and the well-knowH R(t)~tY® behavior of
tions) For the special case=0, the interface tension can be dislocation-free spinodal decomposition is maintained in the
calculated analytically; the equilibrium composition profile presence of fast mobile dislocations, as predicted by(8q.
is c(x,y)= 1+ y’tanh(/1+ y°x/2), giving an interface While these results clearly establish that, at late times and
tensiono(y) = oo(1+ ¥?)¥2 From the results of thessgui-  in the fast dislocation limit, spinodal decomposition is accel-
librium calculations, one would predict that dislocations ac-erated, Fig. 2 also shows that for smaller dislocation mobili-
celerate the spinodal decomposition since they increase thies, the domain growth shows a nonmonotonic behavior, and
interface tension. a strong dependence on the dislocation mobiliBifferent
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FIG. 2. Time dependence of the average domain size for differ-
ent values of the dislocation mobility and for=1. The inset
shows the predictions of E¢14) for m=0.0025(solid line), high-
lighting regimes 2, 3, 4, and 5. The lower dashed line is for
dislocation-free growthro=0) and the upper dashed line is for fast
dislocations (n=>5). For clarity in the figure, we useg=4 for this
calculation.

materials have different dislocation mobilities, so varying the
mobility in our model can be thought of as describing differ-
ent material9.Figure 3 shows snapshots oandb, at vari-
ous times after the quench for dislocation mobilitieg
=my=0.001 for a system of size 128128. As the images
of Fig. 3 show, the dislocation density at the compositional FiG. 3. Gray scale plots of the configurations as a function of
interfaces varies significantly during the time evolution.time. The left panels show the compositicnwith black for ¢
This, coupled with a “drag” on the interfaces caused by the= —1.5 and white foc=1.5. The right panels shofn , with black
dislocations, leads to several regimes of growth, as we novior b,= —0.9 and white foib,=0.9. Times from top to bottom are
discuss. t=20, 500, and 10 000.

Immediately after the quench, the system is in the linear
regime and fluctuations are amplified exponentially. We havevhere ® =V2y, and where we have set,= my=m. Ex-
calculated the maximum growth rate of fluctuations andplicitly solving for ® and substituting the resulting expres-
found that it increases monotonically with increasing dislo-sion in Eq. (10) yields an exact evolution equation far
cation mobility. Hence, in this first regime, the phase sepawhich is nonlocal in time:
ration is enhanced by mobile dislocations; this however only

i i i t
Egg;??ezf;rﬁg of decreasing the time the system spends in the 6=V —c+c3—V2c—myzjoc(t’)em("")dt’ .

The second growth regime corresponds to a situation of (12)
domain growth, with a very small dislocation density at the " .
interfaces(top panels in Fig. B because of the small dislo- Upon writing c(t’)~c(t) +dc(t)(t' —t) and carrying out
cation density at the interfaces, the average domain size foll'® integrals, we obtain the chemical potential
lows closely that of the dislocation-free system.

The third regime occurs when the dislocation density at
the interfaces becomes appreciatteéddle panels in Fig. B ac
and shows a deceleration of the domain growth compared to —my?—
the dislocation-free system. at
e BECLIn lhese a1 subsequent g Can be e sbove exqression can again b readiy analyzed or
the coupled system. For simplicity, we sst 0, and takeV f)II’CU|aI’ domaln of radiu®’. PI’OjeCtI.O.n of Eq(13) onto the

. j o r y interface yields the boundary condition
of Eqg. (8) minusV, of the corresponding equation fby, to
obtain the two equations —

_ o _
(AC) pint=— o +v*Vo(te ™—1/m+e "Ym), (14

uw=—c+c3-V2c—y%c(l—e M

2 m2

(13

te—mt 1 e—mt)

m m

=V —c+c3—V?c+y0] (10)

and where V denotes the local speed of the interfacke

O =-m(0+yc), (1)  =AcoV1+y%(1—e ™) ando=0oo[1+y*(1—e ™)]32 It
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can be seen that mobile dislocations enhance the capillatpnger times, and there is a crossover to a regime of growth
term in i,y Which favors faster growth, and introduce a where the dislocation mobility is no longer a limiting factor.
kinetic term which creates a drag on the interface; competiThe average domain size in this regime increases rapidly.
tion between these two factors gives rise to the nonmonothis corresponds to the fourth regime of growtottom

tonic domain growth. panels in Fig. 3 and leads the system to the asymptotic
Solving the sharp interface probleR?x=0 and AcV regime.
=[Vaine— Viein]- N, where the susperscrigt (—) denotes The asymptotic regime is described by a fully saturated

the gradient outsid@nside the circular domain evaluated at dislocation density at the interfaces, and slowly moving in-
the interface anch denotes the interface normal, with the terfaces. We can estimate from Eg5) that the crossover to
above bOUndary condition erIdS the fOIIOWing analytiC eX-the asymptotic regime occurs when mfl andR> mfl_ In

pression for the coarsening rate: this regime, the dislocations increase the interface tension
5 — and accelerate the phase separation, as discussed for infi-
dR ooVl+tyi(l-e ™) nitely fast dislocations. This behavior is shown in Fig. 2,
dr AR? where at late times the average domain sizenfier5 and
m=0.1 converge to the same behavior.
1 To summarize, we have demonstrated both analytically
X . and numerically that mobile dislocations modify the standard
Y2ooVl+ v (1—e My(mte M—1+e™ ™M spinodal decomposition process, and lead to several new re-
1- amR gimes of growth. Our work suggests a possible explanation

for the conflicting experimental reports on the effects of cold
(15  work on phase separatidrt? which have reported acceler-
ated, decelerated, and unaffected domain growth. We hope
that our work will stimulate more controlled experiments to
elucidate the role of dislocations on phase separation.

Results of numerical integration of E@.5) are plotted in the
inset of Fig. 2 fom=0, 0.0025, and 5, showing good quali-
tative agreement with our full numerical simulatiofse
usedy=4 in this calculation for clarity in the figuje F.L. acknowledges support from the Office of Basic En-
Since the velocity of interfaces decreases as time proergy Sciences, Division of Materials Sciences, U.S. Depart-
ceeds, the kinetic term im;,; becomes less important at ment of Energy under Contract No. DE-AC04-94AL85000.
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