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Influence of mobile dislocations on phase separation in binary alloys
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We introduce a continuum model to describe the phase separation of a binary alloy in the presence of mobile
dislocations. The kinetics of the local composition and dislocation density are coupled through their elastic
fields. We show both analytically and numerically that mobile dislocations modify the standard spinodal
decomposition process, and lead to several regimes of growth. Depending on the dislocation mobility and
observation time, the phase separation may be accelerated, decelerated, or unaffected by mobile dislocations.
For any finite dislocation mobility, we show that the domain growth rate asymptotically becomes independent
of the dislocation mobility, and is faster than the dislocation-free growth rate.
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Much effort has been devoted to studying the process
phase separation in alloys, motivated by a desire to be
understand this industrially relevant problem, but also to
plore the basic physics of nonequilibrium phenomena. M
theoretical and computational studies of phase separatio
alloys have assumed perfect crystallinity of the mater
However, real materials are far from this idealized situati
and usually contain a significant dislocation density.

Previous theoretical work on the coupling between ph
separation and dislocations has already indicated the cru
role that dislocations play: enhancement of nucleation
dislocations,1–5 hardening,6,7 and acceleration of spinodal de
composition by discrete, immobile dislocations.8 These stud-
ies have either focused on the time evolution of the com
sition in the presence ofstatic dislocations, or dislocation
motion in a static nonuniform composition. However, a th
oretical description of the problem allowing for the couple
simultaneous time evolution of the composition and dislo
tion fields is still lacking.

Experimental reports on thermomechanical treatmen
phase separating alloys give an insight on the role of di
cations, as prior cold work increases the dislocation den
These experiments however have painted a conflicting
ture. Cold work has been found to enhance9,10 or reduce11

phase separation, or even leave it unaffected.12

To address these issues, we present a model for a bi
alloy phase separating by spinodal decomposition, in
presence of mobile dislocations. By coupling the compo
tion and dislocations through their elastic fields, we sh
that mobile dislocations lead to several growth regimes.
ymptotically, the dislocations segregate to compositional
terfaces and increase the interface tension. This incre
interface tension causes an acceleration of the phase se
tion compared to the dislocation-free alloy. At intermedia
times, the dislocations still segregate to interfaces, but t
limited mobility creates a drag on the interfaces which d
celerates the phase separation. At earlier times, there is
other growth regime where the domain growth is unaffec
by dislocations, due to a small dislocation density at the
terfaces. Hence, as time proceeds there is a crossover
fected → decelerated→ accelerated, so that experiment
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measurements at different times may yield different conc
sions on the role of dislocations.

We now introduce our theoretical approach. The bina
alloy is described by a continuous compositionc(r ) ~relative
to the average alloy composition! and a continuous Burger’s
vector densityb(r ).13 The free energy is written as a sum
three terms,F5Fc1Fb1Fcoupl . HereFc is the free energy
due to the spatially varying composition, given by

Fc5E dr F2
a

2
c21

u

4
c41

«2

2
u¹cu2G , ~1!

where a5a0(Tc2T), with T the temperature andTc the
critical temperature.a0 and u are positive constants. Th
dislocation free energyFb is given by

Fb5E dr Fa2 ubu21
1

2Y
~¹2xd!2G . ~2!

The first term in this equation describes the local dislocat
core energy. The second term accounts for the nonlocal e
tic interactions~i.e., Peach-Koehler forces14! between the
dislocations, whereY andxd denote the Young modulus an
Airy stress function due to dislocation strain field
respectively.15 Under mechanical equilibrium conditions, th
Airy stress function satisfies16 ¹4xd5Y(“xby2“ybx). Fi-
nally, the interaction between the composition and the dis
cations arises due to the dependence of the lattice con
on the composition,l (c)5 l 0(11hc), and its coupling to the
local compression¹2xd ,8

Fcoupl5hE drc¹2xd . ~3!

The dynamics of the composition and dislocation dens
satisfy conservation laws and are given by

]c

]t
5G¹2

dF
dc

, ~4!

]bx

]t
5~Gg¹x

21Gc¹y
2!

dF
dbx

, ~5!
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and

]by

]t
5~Gc¹x

21Gg¹y
2!

dF
dby

. ~6!

In these equations,G is the composition mobility whileGc
andGg are the dislocation mobilities in the climb and glid
directions, respectively. Such evolution equations for the
location densityb have been employed previously in th
context of strain relaxation in heteroepitaxial films.17

Using the transformations c→(uau/u)1/2c, r
→(«2/uau)1/2r , t→(«2/Guau2)t, b→(uau3/Y«2u)1/2b, and
xd→(Y«4/u)1/2xd , we obtain the dimensionless dynamic
equations

]c

]t
5¹2@6c1c32¹2c1g¹2xd#, ~7!

]bx

]t
5~mg¹x

21mc¹y
2!

3F“yxd1g“yE dr 8G~r ,r 8!¹ r8
2 c1ebxG , ~8!

a similar equation for] tby follows from Eq.~8! by replacing
bx→by , “y→2“x , and “x→2“y . In the above,
“ r

4G(r ,r 8)5d(r2r 8), and the top~bottom! sign in Eq. (7)
is taken forT.Tc (T,Tc). The new dimensionless param
eters are g5gY1/2/uau1/2, e5auau/«2Y, and mc,g
5Gc,g«2Y/Guau2.

We first discuss the equilibrium profile as a function
the coupling parameterg. We take the negative sign in Eq
~7! corresponding to an alloy in the two-phase region of
phase diagram. To obtain the equilibrium profile for a giv
g, we start from the known analytical solutionc(x,y)
5tanh(x/A2) for the composition wheng50, and numeri-
cally integrate the coupled Eqs.~7! and ~8! until a steady
state is reached.~We use a finite difference Euler scheme
a uniform two-dimensional grid with periodic boundary co
ditions, grid spacingDx5Dy51.0, and time stepDt
50.05.! Figure 1 shows the composition and dislocati
field by for different values ofg. The dislocations are local
ized at the interface, with a density that increases withg.
Since the dislocations have a uniformby component in the
direction parallel to the interface andbx50, the dislocation
density at the interface is analogous to a line of discrete e
dislocations~misfit dislocations!.

From the equilibrium profiles, we can extract the interfa
tension in the presence of dislocations, as shown in the i
of Fig. 1. Clearly, the interface tension is increased by
presence of dislocations.~Note that the total energy of th
system, which scales with area, is reduced by the dislo
tions.! For the special casee50, the interface tension can b
calculated analytically; the equilibrium composition profi
is c(x,y)5A11g2tanh(A11g2x/A2), giving an interface
tensions(g)5s0(11g2)3/2. From the results of theseequi-
librium calculations, one would predict that dislocations a
celerate the spinodal decomposition since they increase
interface tension.
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This expectation can be verified in thefast dislocation
limit (mc,g→`) by performing a Lifshitz-Slyosov calcula
tion of the growth of an isolated circular domain at la
times.18 For the casee50, the domain sizeR(t) follows

R3~ t !5
3s~g!

@Dc~g!#2
t5

3s0

4
~11g2!1/2t, ~9!

whereDc(g) is the composition difference between the i
side and outside of the circular domain. The domains t
coarsen faster in the presence of fast dislocations by a fa
(11g2)1/2.

The above arguments suggest that, in the fast disloca
limit and at late times, spinodal decomposition is accelera
by dislocations. To verify these predictions, we simulat
numerically the full time evolution of the phase separatio
We integrated numerically the coupled set of dynami
equations, starting from a random initial profile for the com
position andb(r )50. We used the parameters above, w
g51, mc5mg[m, and simulated a 50-50 alloy.

We measured the average domain size as a functio
time by mapping the composition field onto an Ising mod
and calculating the total length of interfacesL(t) in the sys-
tem; the average domain size is thenR(t)5A/L(t), whereA
is the total area of the system. Figure 2 shows the resu
such a calculation averaged over four runs with differe
initial random fluctuations for systems of size 2563256. The
average domain size for the larger mobility (m55, dashed
line! increases faster than the dislocation-free case~solid
line!, and the well-known18 R(t);t1/3 behavior of
dislocation-free spinodal decomposition is maintained in
presence of fast mobile dislocations, as predicted by Eq.~9!.

While these results clearly establish that, at late times
in the fast dislocation limit, spinodal decomposition is acc
erated, Fig. 2 also shows that for smaller dislocation mob
ties, the domain growth shows a nonmonotonic behavior,
a strong dependence on the dislocation mobility.~Different

FIG. 1. Equilibrium profiles for~a! the composition field and~b!
the dislocation field. The figures show half the cell in the syst
with periodic boundary conditions. The inset in~b! shows the inter-
face tension calculated from the equilibrium profiles.
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materials have different dislocation mobilities, so varying t
mobility in our model can be thought of as describing diffe
ent materials.! Figure 3 shows snapshots ofc andbx at vari-
ous times after the quench for dislocation mobilitiesmc
5mg50.001 for a system of size 1283128. As the images
of Fig. 3 show, the dislocation density at the compositio
interfaces varies significantly during the time evolutio
This, coupled with a ‘‘drag’’ on the interfaces caused by t
dislocations, leads to several regimes of growth, as we n
discuss.

Immediately after the quench, the system is in the lin
regime and fluctuations are amplified exponentially. We h
calculated the maximum growth rate of fluctuations a
found that it increases monotonically with increasing dis
cation mobility. Hence, in this first regime, the phase se
ration is enhanced by mobile dislocations; this however o
has the effect of decreasing the time the system spends i
linear regime.

The second growth regime corresponds to a situation
domain growth, with a very small dislocation density at t
interfaces~top panels in Fig. 3!; because of the small dislo
cation density at the interfaces, the average domain size
lows closely that of the dislocation-free system.

The third regime occurs when the dislocation density
the interfaces becomes appreciable~middle panels in Fig. 3!,
and shows a deceleration of the domain growth compare
the dislocation-free system.

The behavior in these and subsequent regimes can be
derstood by performing an analysis of the domain growth
the coupled system. For simplicity, we sete50, and take“y
of Eq. ~8! minus“x of the corresponding equation forby to
obtain the two equations

] tc5¹2@2c1c32¹2c1gQ# ~10!

and

] tQ52m~Q1gc!, ~11!

FIG. 2. Time dependence of the average domain size for dif
ent values of the dislocation mobility and forg51. The inset
shows the predictions of Eq.~14! for m50.0025~solid line!, high-
lighting regimes 2, 3, 4, and 5. The lower dashed line is
dislocation-free growth (m50) and the upper dashed line is for fa
dislocations (m55). For clarity in the figure, we usedg54 for this
calculation.
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whereQ5¹2xd and where we have setmc5mg5m. Ex-
plicitly solving for Q and substituting the resulting expre
sion in Eq. ~10! yields an exact evolution equation forc
which is nonlocal in time:

] tc5¹2F2c1c32¹2c2mg2E
0

t

c~ t8!em(t82t)dt8G .
~12!

Upon writing c(t8)'c(t)1] tc(t)(t82t) and carrying out
the integrals, we obtain the chemical potential

m52c1c32¹2c2g2c~12e2mt!

2mg2
]c

]t S te2mt

m
2

1

m2
1

e2mt

m2 D . ~13!

The above expression can again be readily analyzed f
circular domain of radiusR8. Projection of Eq.~13! onto the
interface yields the boundary condition

~D c̄!m int52
s̄

R8
1g2Vs̄~ te2mt21/m1e2mt/m!, ~14!

where V denotes the local speed of the interface,D c̄

5Dc0A11g2(12e2mt) ands̄5s0@11g2(12e2mt)#3/2. It

FIG. 3. Gray scale plots of the configurations as a function
time. The left panels show the compositionc with black for c
521.5 and white forc51.5. The right panels showbx , with black
for bx520.9 and white forbx50.9. Times from top to bottom are
t520, 500, and 10 000.
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can be seen that mobile dislocations enhance the capi
term in m int which favors faster growth, and introduce
kinetic term which creates a drag on the interface; comp
tion between these two factors gives rise to the nonmo
tonic domain growth.

Solving the sharp interface problem¹2m50 and DcV
5@¹m int

1 2¹m int
2 #•n, where the susperscript1 ~2! denotes

the gradient outside~inside! the circular domain evaluated a
the interface andn denotes the interface normal, with th
above boundary condition yields the following analytic e
pression for the coarsening rate:

dR

dt
5

s0A11g2~12e2mt!

4R2

3
1

12
g2s0A11g2~12e2mt!~mte2mt211e2mt!

4mR

.

~15!

Results of numerical integration of Eq.~15! are plotted in the
inset of Fig. 2 form50, 0.0025, and 5, showing good qua
tative agreement with our full numerical simulations~we
usedg54 in this calculation for clarity in the figure!.

Since the velocity of interfaces decreases as time p
ceeds, the kinetic term inm int becomes less important a
y
s
wo

08120
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longer times, and there is a crossover to a regime of gro
where the dislocation mobility is no longer a limiting facto
The average domain size in this regime increases rap
This corresponds to the fourth regime of growth~bottom
panels in Fig. 3!, and leads the system to the asympto
regime.

The asymptotic regime is described by a fully satura
dislocation density at the interfaces, and slowly moving
terfaces. We can estimate from Eq.~15! that the crossover to
the asymptotic regime occurs whent@m21 andR@m21. In
this regime, the dislocations increase the interface tens
and accelerate the phase separation, as discussed for
nitely fast dislocations. This behavior is shown in Fig.
where at late times the average domain size form55 and
m50.1 converge to the same behavior.

To summarize, we have demonstrated both analytic
and numerically that mobile dislocations modify the stand
spinodal decomposition process, and lead to several new
gimes of growth. Our work suggests a possible explana
for the conflicting experimental reports on the effects of co
work on phase separation9–12 which have reported acceler
ated, decelerated, and unaffected domain growth. We h
that our work will stimulate more controlled experiments
elucidate the role of dislocations on phase separation.
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