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Compositional interface dynamics within symmetric
and asymmetric planar lipid bilayer membranes

Tao Hana and Mikko Haataja*abcd
Compositional domains within multicomponent lipid bilayer

membranes are believed to facilitate many important cellular

processes. In this work, we first derive the general equations that

describe the dynamics of compositional domains within planar

membranes with asymmetry in leaflet properties and in the

presence of a thermodynamic coupling between the leaflets.

These equations are then employed to develop analytical solu-

tions for the dynamics of the recurrence of registration for

circular domains in the case of weak coupling. In addition, a

closed-form expression for the decay rate of interface fluctua-

tions, when only one leaflet supports compositional domains,

is derived.
Multicomponent lipid bilayer membranes comprise an important
class of so biological materials. In mammalian cells, composi-
tional lipid domains coined “ras”1 are believed to play a key role
in several cellular processes, such as cell signaling and trafficking.2

Experimentally, it has been shown that synthetic membranes
whose overall compositions mimic those of the extracellular leaet
of the cell membrane can phase separate into distinct liquid
phases,3 while those mimicking the cytoplasmic leaet are
homogeneous.4 Interestingly, when the two kinds of leaets are
combined to form asymmetric membranes, phase separation can
either be induced5,6 or suppressed altogether.6 Furthermore, when
both leaets contain domains, they are oen found in perfect
registry,5,7,8 although out-of-registry formation of nanoscale
domains has also been observed in simulations.9 These observa-
tions indicate that a signicant thermodynamic coupling exists
between the two leaets.
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Several physical mechanisms have been proposed to account for
the coupling effect. Collins has suggested that the coupling strength
is directly related to the line tension between the compositional
domains within a single leaet.10 May in turn has compared three
possible candidates, namely electrostatic coupling, cholesterol ip-
op, and dynamic chain interdigitation, and suggested that
dynamic chain interdigitation likely provides themain contribution
to the coupling,11 while Putzel et al. have argued that the coupling
results from a complex interplay between entropic and energetic
effects.12 In our work, the coupling is treated phenomenologically;
interested readers are referred to the papers by Collins,10 May,11 and
Putzel et al.12 for amore detailed discussion of the possible coupling
mechanisms.

While the effects of this thermodynamic coupling have been
theoretically investigated with regard to the equilibrium behavior of
asymmetric membranes,11,13,14 its effects on the compositional
domain dynamics have received less attention. Wagner et al.13

employed lattice Boltzmann simulations to investigate phase sepa-
ration processes within asymmetric bilayer membranes. Using the
same technique, Ngamsaad et al.15 studied the effects of dynamic
asymmetry between the leaets on phase separation kinetics, in
addition to the thermodynamic coupling. Finally, Pantano et al.16

employed coarse-grained molecular dynamics simulations to
investigate the recurrence of registration, when domains across the
two leaets are initially displaced from the registry. While these
studies have yielded important physical insights into the coupled
dynamics of lipid domains, a physically based approach capable of
providing quantitative predictions for such dynamics has been
lacking.

To this end, in this work, starting from a coarse-grained diffuse-
interface approach, we rst derive the general equations that
describe the dynamics of compositional domains within planar
symmetric or asymmetric lipid bilayer membranes. The general
equations are then employed to develop analytical solutions for the
dynamics of the recurrence of registration for circular domains in
the case of weak coupling. In addition, a closed-form expression for
the decay rate of interface uctuations, when only one leaet
supports compositional domains, is derived.
This journal is ª The Royal Society of Chemistry 2013
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Fig. 1 Schematic of the lipid bilayer membrane model considered in this work.
Compositionally segregated domains are indicated in red, and the matrix phase is
indicated in blue or purple. Such domains can exist either within both leaflets or
only one.
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Theoretical approach

As illustrated in the schematic in Fig. 1, wewill consider planar lipid
bilayer membranes in contact with an aqueous solvent on both
sides of the membrane. Compositional domains can exist either
within both leaets or only one, and theymay be in or out of registry
across the leaets. In order to model the membrane dynamics
within both leaets, we will employ the so-called diffuse-interface
method, which explicitly incorporates both advective and diffusive
lipid transport processes within the two coupled leaets of the 2D
membrane,17,18 and which also allows for asymmetry in terms of
composition and thermodynamic behavior.

Within the diffuse-interface formalism, two order parameters
(OPs), j1(r, t) and j2(r, t), are employed to quantify the relative
composition of matrix-enriched lipid components within the two
leaets. More specically, the dynamic equations for the OPs, also
known as advective Cahn–Hilliard equation,19 are given by vjI/vt +
uMI $ VjI ¼ MIV

2mI, where the subscript I ¼ 1 or 2 stands for
monolayer 1 or 2, uMI denotes the membrane velocity, MI denotes
mobility, and mIh dF/djI denotes the chemical potential, where F¼Ð
dr[W1

2(Vj1)
2/4 + W2

2(Vj2)
2/4 + A1f1(j1) + A2f2(j2) + Lg(j1,j2)]

denotes a Ginzburg–Landau free energy functional. Furthermore,
W1 andW2 are constant coefficients, AIfI(jI) denotes the bulk energy
density with magnitude AI, and the term Lg(j1,j2) incorporates a
thermodynamic coupling between the leaets with strength L.11,13,14

For the solvent andmembrane hydrodynamic ow elds (uS and
uM, respectively), we make the common assumption that they both
satisfy the overdamped linearized Navier–Stokes equations hSIV

2uSI
� VpSI ¼ 0, hMIV

2uMI � VpMI + fSI + G(uMII � uMI) + WI ¼ 0 and
incompressibility conditions V $ uSI ¼ 0, V $ uMI ¼ 0. Again, the
subscript I, II ¼ 1 or 2. Furthermore, h and p denote the viscosity
and pressure, fSI ¼ �hSIvuSI/vz|z¼0 incorporates the coupling
between solvent andmembrane ow elds, while the term G(uMII�
uMI) accounts for intermonolayer friction,20,21 and WI ¼ mIVjI

accounts for the effects of compositional variations on the
membrane pressure eld.19

In thermodynamic equilibrium, the governing equations admit
mean-eld solutions for which the domains within each leaet are
delineated by interfaces with constant curvature, and the domains
are either in perfect registry or out-of-registry across the two leaets,
depending on the sign of the thermodynamic coupling term. If the
system is perturbed by introducing undulating interfaces or dis-
placing the registered domains across the two leaets apart, the
This journal is ª The Royal Society of Chemistry 2013
system will relax back towards equilibrium via motion of compo-
sitional interfaces as driven by interfacial line tension and ther-
modynamic coupling. [Here we are explicitly assuming that the
thermodynamic coupling favors the registered alignment. The
analysis below, however, works for either attractive or repulsive
interactions between the domains.] The goal is to extract these
interface dynamics from the diffuse-interface description via the so-
called sharp-interface (S-I) limit analysis.18,22
Sharp-interface limit equations

The basic qualitative idea of the S-I limit analysis is as follows. For
each phase-separated leaet, we consider solutions to governing
equations in twodistinct spatial regions, namely those in the vicinity
of an interface (“inner region”) and away from any interface (“outer
region”). The governing equations in the outer region reduce to bulk
transport equations, whilematching the outer solutions to the inner
ones provides the appropriate boundary conditions along the
moving interface.Technically, thisprocedure is carriedoutbymeans
of matched asymptotic expansions, where we treat the thermody-
namic coupling and interface uctuation as small perturbations.

Upon generalizing the analysis developed for symmetric
membranes,18 the following set of S-I limit equations are obtained.23

First, away from compositional interfaces, the OP dynamics reduce
to advection–diffusion equations given by

vjI

vt
þ uMI$VjI ¼ MIV

2mI : (1)

The two boundary conditions along the compositional interfaces
are given by the kinematic one and the modied Gibbs–Thomson
boundary conditions, which are

vInjint ¼ uMInjint þ
MI

DjI

�
vmI

vu

��
þ
; (2)

mI jint ¼ mI ;eq �
kIsI

DjI

þ L

DjI

ðþN

�N

du
djI0

du

v½gðjI0;jII0Þ�
vjI0

: (3)

Finally, compositional interfaces give rise to forces acting upon
the membrane as given by

W I ¼
2
4� kIsI þ L

ðþN

�N

du
djI0

du

v½gðjI0;jII0Þ�
vjI0

3
5dðr� rIsÞn̂ðrIsÞ:

(4)

Here, vIn|int and uMIn|int are the normal components of interface
velocity andmembrane velocity at the interface, respectively, u and s
denote the coordinate normal and tangential to the interface, while
DjIhj+

I � j�
I denotes the order parameter difference between two

bulk phases at equilibrium. Furthermore, [X]�+ h X(0�) � X(0+)
denotes the jump in the quantity “X” across the interface, mI|int and
mI,eq are the chemical potentials at interface and at equilibrium
respectively, while kI and sI denote the interfacial curvature and line
tension, respectively. Finally, jI0[u � hI] and jII0[u � hII] denote the
one-dimensional equilibrium solutions corresponding to planar
interfaces displaced by hI and hII in the absence of thermodynamic
coupling and curvature effects within the two leaets, d(r � rIs)
Soft Matter, 2013, 9, 2120–2124 | 2121
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Fig. 2 Schematic of different compositional interface problems considered in
this work. In the case of recurrence of interface registration of domains (A), the
compositional domains are initially displaced by an amount Dh, and migrate back
towards the registry due to the thermodynamic coupling between the leaflets.
For the interface fluctuation problem in (B), domains form only within one of the
leaflets, while the other remains homogeneous. Here, a curved interface will relax
towards a planar one due to line tension.
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denotes the delta function, rIs denotes the instantaneous position of
the interface, and n̂ denotes the normal to the interface.

The interpretation of eqn (1)–(4), the derivation of which
constitutes the central result of this manuscript, is straightforward.
First, eqn (1) states that lipids undergo both diffusive and advective
dynamics as dictated by the local thermodynamic driving forces and
membrane ow eld. Second, eqn (2) implies that interfaces can
move by both lipids diffusing to/away from it and by advection.
Third, the local chemical potential along the interfaces is affected by
both the local interface curvature and thermodynamic coupling as
given by eqn (3). Finally, eqn (4) expresses the fact that interfaces,
which are either (a) curved or (b) planar but displaced away from
equilibrium across the leaets, give rise to the effective body forces
acting upon the uid membrane. [We note that in cases where one
of the leaets remains homogeneous, the term involving L in
eqn (3) contributes a constant which can be ignored, while the
corresponding term in eqn (4) no longer appears.23]

Before we apply the above S-I limit equations to two represen-
tative examples of compositional interface dynamics, namely (1)
recurrence of interface registration within symmetric membranes
and (2) compositional interface uctuations within asymmetric
membranes, a few pertinent remarks are in order. First, although
eqn (2)–(4) explicitly depend on jI0, once a specic coupling term g
is chosen, the resulting expressions can be written solely in terms of
physical parameters, as will be demonstrated below. Second, in
deriving eqn (1)–(4), we have treated the thermodynamic coupling
as a weak perturbation. In the case of strong coupling, which
induces signicant compositional variations and additional inter-
faces within the displaced domains, these equations can still be
applied within each “sub-domain”, once the parameters sI and
elds jI0 (which now depend on L) appearing in the expressions
have been evaluated numerically.
Recurrence of interface registration in
symmetric membranes

When initially registered domains are displaced relative to each
other, recurrence of interface registration takes place. Since in
experiments, circular domain morphology has been most oen
observed,3,5,7 we will study the dynamics of this process for circular
domains, which admit explicit analytical solutions in the case of
weak thermodynamic coupling.

Here we consider only one domain on each layer and ignore the
solvent effect for simplicity (see Fig. 2A for a schematic). We assume
that the domains maintain a circular shape with radius R
throughout the relaxation process. Initially, one of the registered
domains is displaced relative to the other byDh(0) in the x-direction.
In order to derive an equation of motion for Dh(t), we will consider
contributions from advective and diffusive lipid transport sepa-
rately. For the advection part, we rst evaluate the net force on one
of the domains for a given conguration from eqn (4), which is

Fx ¼ R
Ð 2p
0

Ðþ
� Wx d ud q ¼ LR

Ð 2p
0

� ÐþN
�N du

djI0

du
vg
vjI0

�
cos qd q,

where
Ðþ
� denotes an integration across the compositional interface.

Then, by introducing a hydrodynamic drag coefficient lT(R, Dh),
which depends on both domain radius R and distance between
2122 | Soft Matter, 2013, 9, 2120–2124
domains Dh, we obtain the advective contribution to the velocity of
approach as vadv¼ Fx/lT(R,Dh). Next, for the diffusion part, we solve
V2mI ¼ 0 for an isolated circular domain embedded within an
innite matrix, subject to the boundary conditions from eqn (3). In

particular, it can be shown that mI ¼ A0 þ
PN

n¼1An
�r
R

�n
cosðnqÞ

when r# R andmI ¼ A0 þ
PN

n¼1An

�
R
r

�n

cosðnqÞwhen r$ R, where

A0 ¼ 1
2p

ð2p
0

mI jintdq and An ¼ 1
p

ð2p
0

mI jint cosðnqÞdq. By using the

boundary conditions vdiffIn ðqÞ ¼ MI

DjI

�
vmI

vu

��
þ

from eqn (2) and the

relationship vdiff ¼ p�1
Ð 2p
0 vdiffIn ðqÞcos qdq, we obtain

vdiff ¼ 2MIL

pRðDjIÞ2
ð2p
0

�ðþN

�N

du
djI0

du
vg
vjI0

�
cos qdq due to diffusion

alone.23 Finally, combining the advective and diffusive contribu-
tions, we obtain

dDh

dt
¼ � 2L

pR

�
pR2

lTðR;DhÞ þ
2d0D

s

� ð2p
0

0
@ ðþN

�N

du
djI0

du

vg

vjI0

1
Acos qdq;

(5)

in which we have used the relationship Ms ¼ d0D(Dj)
2,18 where d0

and D denote the capillary length and lipid diffusion coefficient,
respectively. Note that the thermodynamic coupling term implicitly
depends on Dh, thus making eqn (5) in general a non-linear
equation.

Tomake further progress, wewill employ a commonly used form
for g, namely a local interaction of the form g(jI0,jII0)¼ (jI0� jII0)

2/
Dj0

2.11,13 In the S-I limit, where we can approximate jI0 and jII0 as
step functions, it is straightforward to simplify eqn (5) to yield

djDhj
dt

¼ � 2L

pR

�
4pR2

lTðR;DhÞ þ
8d0D

s

� ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
1�

�
Dh

2R

�2
s

�QðjDhjÞ; (6)

where Q(x) denotes the unit step function such that Q ¼ 1 for x >
0 and zero otherwise, and Dh(0) < 2R to guarantee non-zero initial
overlap. Due to the hydrodynamic interaction between the domains,
we have been unable to derive a closed-form expression for lT with
an arbitrary Dh. However, an explicit expression can be derived for
This journal is ª The Royal Society of Chemistry 2013
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the case of perfect overlap (i.e.,Dh¼ 0). By following the approach in
ref. 24, we can explicitly solve the hydrodynamic equations to yield

lTðR; 0Þhl̂T ¼ 4phM

�
1
2
n2 þ nK1ðnÞ

K0ðnÞ
�
, where nhR

ffiffiffiffiffiffiffiffiffiffiffiffiffiffi
2G=hM

p
, and

K0 and K1 denote the modied Bessel functions of the second kind
of orders zero and one, respectively.23 Note that in the limit R� Rc,

where Rch
ffiffiffiffiffiffiffiffiffiffiffiffiffiffi
hM=2G

p
, l̂Tz 4phM/[ln(2Rc/R)� g], where g¼ 0.577.

denotes the Euler's constant, while in the opposite limit R[ Rc, l̂T
z 4pGR2.

Upon employing the approximation lT(R,Dh) z l̂T,
eqn (6) can be now explicitly solved to

yield
DhðtÞ
2R

¼ sin
�
arcsin

�
Dhð0Þ
2R

��
1� t

sr

��
, where

srharcsin
�
Dhð0Þ
2R

� =24L
0
@ 4

l̂T
þ 8d0D
pR2s

1
A
3
5 denotes the time it

takes for the shied domains to return to the registry. By employing
representative values for the parameters appearing in sr, namely
Dh(0) ¼ R, G ¼ 108 Pa s m�1, hM ¼ 10�9 Pa s m, d0 ¼ 10�9 m, D ¼
10�12 m2 s�1, s ¼ 10�12 N, and L ¼ 10�4 J m�2, we obtain sr �
10�4 s for R¼ 10 nm and sr � 102 s for R¼ 10 mm. It is interesting
to note that the sliding of the two leaets and diffusion within
each leaet give rise to comparable contributions to sr above in
the case of liquid domains.

Interestingly, Pantano et al. have recently studied the dynamics
of domain registration via coarse-grainedMD simulations.16 In their
work, simulations were employed to evaluate the effective coupling
strengthL. By employing the valuesLz 10�2 J m�2 and srz 3.3�
10�7 s for domains of sizeR¼ 4 nmas reported by Pantano et al., we
can employ our expression to compute the frictional coupling
strength between the leaets (which was not reported) to be G z
108 Pa s m�1, which falls right into the reasonable range of exper-
imental measurements.20,21 Perhaps more importantly, by experi-
mentally measuring the registration kinetics of initially displaced
circular domains, one can quantify the magnitude of the coupling
coefficient L by employing eqn (6), once the other relevant physical
parameters (D, s, d0, hM, and G) have been determined indepen-
dently. Of course, one can in principle experimentally measureL by
quantifying the out-of-registry uctuations between the domains, as
discussed by Putzel et al.;12 however, uctuations are expected to be
very small in magnitude (�1 nm), which poses signicant experi-
mental challenges.

Compositional interface fluctuations in
asymmetric membranes

Finally, to further highlight the generality of the S-I limit equations
[i.e., eqn (1)–(4)], we discuss the case of interface uctuation within
asymmetric membranes as the second example. Here, we will
consider one experimentally observed case (see, e.g., ref. 5), where
one of the leaets remains homogeneous while the other one
contains compositional domains, as illustrated in Fig. 2B.

Starting from a gently undulating interface, the uctuation
amplitude decays to zero driven by line tension. Assuming a sinu-
soidal form h ¼ h0 exp(iukt + ikx) for the interface uctuation, the
goal is to compute the decay rate iuk versus wave number k.
This journal is ª The Royal Society of Chemistry 2013
Following the procedure outlined previously,18 by solving the
coupled hydrodynamic equations for the two leaets and solvent as
well as eqn (1)–(4), we obtain

iuk ¼ � sk3

2p

ðþN

�N

a2	
a1a2 � G2


 d~q

1þ ~q2
	 
� 2Dd0k

3; (7)

where anhhMnk
2ð1þ ~q2Þ þ hSnk

ffiffiffiffiffiffiffiffiffiffiffiffiffi
1þ ~q2

q
þ G.23 To illustrate the

new physics contained in eqn (7), we will consider the case in which
the homogeneous layer is effectively immobile (for example, due to
a solid support) and choose hM2 ¼ N correspondingly. In this case,

iukz�
� s

2G
þ 2Dd0

�
k3 when k/0: (8)

Thus, both lipid diffusion and sliding of the two leaets relative
to each other contribute �k3 terms to the decay rate. This behavior
should be readily observable in supported membranes.

Conclusion

In this work, starting from a diffuse-interface approach, we have
derived the general equations that describe the dynamics of
compositional domains within symmetric or asymmetric lipid
bilayer membranes in the presence of a thermodynamic coupling
between the leaets. The general equations were then employed to
quantify the dynamics of the recurrence of registration for circular
domains in the case of weak coupling. It was shown that experi-
mentallymeasuring these dynamics would enable one to determine
the strength of the thermodynamic coupling between the leaets. A
closed-form expression for the decay rate of interface uctuations,
in the case in which only one leaet supports compositional
domains, was also derived.
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