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Compositional domains within multicomponent lipid bilayer
membranes are believed to facilitate many important cellular
processes. In this work, we first derive the general equations that
describe the dynamics of compositional domains within planar
membranes with asymmetry in leaflet properties and in the
presence of a thermodynamic coupling between the leaflets.
These equations are then employed to develop analytical solu-
tions for the dynamics of the recurrence of registration for
circular domains in the case of weak coupling. In addition, a
closed-form expression for the decay rate of interface fluctua-
tions, when only one leaflet supports compositional domains,
is derived.

Multicomponent lipid bilayer membranes comprise an important
class of soft biological materials. In mammalian cells, composi-
tional lipid domains coined “rafts™ are believed to play a key role
in several cellular processes, such as cell signaling and trafficking.>
Experimentally, it has been shown that synthetic membranes
whose overall compositions mimic those of the extracellular leaflet
of the cell membrane can phase separate into distinct liquid
phases,® while those mimicking the cytoplasmic leaflet are
homogeneous.* Interestingly, when the two kinds of leaflets are
combined to form asymmetric membranes, phase separation can
either be induced®® or suppressed altogether.® Furthermore, when
both leaflets contain domains, they are often found in perfect
registry,>® although out-ofregistty formation of nanoscale
domains has also been observed in simulations.” These observa-
tions indicate that a significant thermodynamic coupling exists
between the two leaflets.
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Several physical mechanisms have been proposed to account for
the coupling effect. Collins has suggested that the coupling strength
is directly related to the line tension between the compositional
domains within a single leaflet.’ May in turn has compared three
possible candidates, namely electrostatic coupling, cholesterol flip-
flop, and dynamic chain interdigitation, and suggested that
dynamic chain interdigitation likely provides the main contribution
to the coupling,™ while Putzel et al. have argued that the coupling
results from a complex interplay between entropic and energetic
effects.”” In our work, the coupling is treated phenomenologically;
interested readers are referred to the papers by Collins," May,"* and
Putzel et al.*? for a more detailed discussion of the possible coupling
mechanisms.

While the effects of this thermodynamic coupling have been
theoretically investigated with regard to the equilibrium behavior of
asymmetric membranes,"**** its effects on the compositional
domain dynamics have received less attention. Wagner et al™
employed lattice Boltzmann simulations to investigate phase sepa-
ration processes within asymmetric bilayer membranes. Using the
same technique, Ngamsaad et al.*® studied the effects of dynamic
asymmetry between the leaflets on phase separation kinetics, in
addition to the thermodynamic coupling. Finally, Pantano et al.*®
employed coarse-grained molecular dynamics simulations to
investigate the recurrence of registration, when domains across the
two leaflets are initially displaced from the registry. While these
studies have yielded important physical insights into the coupled
dynamics of lipid domains, a physically based approach capable of
providing quantitative predictions for such dynamics has been
lacking.

To this end, in this work, starting from a coarse-grained diffuse-
interface approach, we first derive the general equations that
describe the dynamics of compositional domains within planar
symmetric or asymmetric lipid bilayer membranes. The general
equations are then employed to develop analytical solutions for the
dynamics of the recurrence of registration for circular domains in
the case of weak coupling. In addition, a closed-form expression for
the decay rate of interface fluctuations, when only one leaflet
supports compositional domains, is derived.
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Fig. 1 Schematic of the lipid bilayer membrane model considered in this work.
Compositionally segregated domains are indicated in red, and the matrix phase is
indicated in blue or purple. Such domains can exist either within both leaflets or
only one.

Theoretical approach

As illustrated in the schematic in Fig. 1, we will consider planar lipid
bilayer membranes in contact with an aqueous solvent on both
sides of the membrane. Compositional domains can exist either
within both leaflets or only one, and they may be in or out of registry
across the leaflets. In order to model the membrane dynamics
within both leaflets, we will employ the so-called diffuse-interface
method, which explicitly incorporates both advective and diffusive
lipid transport processes within the two coupled leaflets of the 2D
membrane,”® and which also allows for asymmetry in terms of
composition and thermodynamic behavior.

Within the diffuse-interface formalism, two order parameters
(OPs), y(r, t) and y,(r, t), are employed to quantify the relative
composition of matrix-enriched lipid components within the two
leaflets. More specifically, the dynamic equations for the OPs, also
known as advective Cahn-Hilliard equation, are given by dy/,/0t +
Uy - V¥ = MN*u;, where the subscript I = 1 or 2 stands for
monolayer 1 or 2, u,; denotes the membrane velocity, M; denotes
mobility, and u; = 3F/dy; denotes the chemical potential, where F =
JaMW 2 (Wa/a + WX (Vyo)la + Afi¥n) + Aofi(¥n) + Ag¥a)]
denotes a Ginzburg-Landau free energy functional. Furthermore,
W, and W, are constant coefficients, Afi(y/;) denotes the bulk energy
density with magnitude A, and the term g(y,,¥,) incorporates a
thermodynamic coupling between the leaflets with strength /.***>**

For the solvent and membrane hydrodynamic flow fields (us and
uyy, respectively), we make the common assumption that they both
satisfy the overdamped linearized Navier-Stokes equations 7¢V g
— Vps = 0, mVtty — Vpa + fg + Ttesy — ) + Wy = 0 and
incompressibility conditions V - ug; = 0, V - uy; = 0. Again, the
subscript 7, II = 1 or 2. Furthermore, 7 and p denote the viscosity
and pressure, f5; = =ns0us/0z|,—, incorporates the coupling
between solvent and membrane flow fields, while the term I'(syy; —
uyy) accounts for intermonolayer friction,**' and W; = w,Viy;
accounts for the effects of compositional variations on the
membrane pressure field.*

In thermodynamic equilibrium, the governing equations admit
mean-field solutions for which the domains within each leaflet are
delineated by interfaces with constant curvature, and the domains
are either in perfect registry or out-of-registry across the two leaflets,
depending on the sign of the thermodynamic coupling term. If the
system is perturbed by introducing undulating interfaces or dis-
placing the registered domains across the two leaflets apart, the
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system will relax back towards equilibrium via motion of compo-
sitional interfaces as driven by interfacial line tension and ther-
modynamic coupling. [Here we are explicitly assuming that the
thermodynamic coupling favors the registered alignhment. The
analysis below, however, works for either attractive or repulsive
interactions between the domains.] The goal is to extract these
interface dynamics from the diffuse-interface description via the so-
called sharp-interface (S-I) limit analysis.'®*

Sharp-interface limit equations

The basic qualitative idea of the S-I limit analysis is as follows. For
each phase-separated leaflet, we consider solutions to governing
equations in two distinct spatial regions, namely those in the vicinity
of an interface (“inner region”) and away from any interface (“outer
region”). The governing equations in the outer region reduce to bulk
transport equations, while matching the outer solutions to the inner
ones provides the appropriate boundary conditions along the
moving interface. Technically, this procedure is carried out by means
of matched asymptotic expansions, where we treat the thermody-
namic coupling and interface fluctuation as small perturbations.

Upon generalizing the analysis developed for symmetric
membranes,'® the following set of S-I limit equations are obtained.”
First, away from compositional interfaces, the OP dynamics reduce
to advection—diffusion equations given by

%-F"M/'V‘//I =M, Vu;. 1)

The two boundary conditions along the compositional interfaces
are given by the kinematic one and the modified Gibbs-Thomson
boundary conditions, which are

M; [ou, |
VIn|im = uMIn‘im + A_lpll {%} ; (2)
+ oo
_ _kpop A dvyo d[g(W10, Yiro)]
Brlint = Breq AY, + AV, J u du —al//m . 3)

Finally, compositional interfaces give rise to forces acting upon
the membrane as given by

+ o
W[: —K101+AJdH

—

vy 9[g (Y105 Viro)]
du Wi

o(r — rrs)i(ry).

@

Here, Vi |ine and uym|ine are the normal components of interface
velocity and membrane velocity at the interface, respectively, u and s
denote the coordinate normal and tangential to the interface, while
Ay, = — y; denotes the order parameter difference between two
bulk phases at equilibrium. Furthermore, [X]: = X(07) — X(0")
denotes the jump in the quantity “X” across the interface, u|ic and
Mzeq are the chemical potentials at interface and at equilibrium
respectively, while x; and ¢; denote the interfacial curvature and line
tension, respectively. Finally, y,[u — A;] and yyo[u — k] denote the
one-dimensional equilibrium solutions corresponding to planar
interfaces displaced by 7; and A in the absence of thermodynamic
coupling and curvature effects within the two leaflets, d(r — ry)
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denotes the delta function, r;; denotes the instantaneous position of
the interface, and i denotes the normal to the interface.

The interpretation of eqn (1)-(4), the derivation of which
constitutes the central result of this manuscript, is straightforward.
First, eqn (1) states that lipids undergo both diffusive and advective
dynamics as dictated by the local thermodynamic driving forces and
membrane flow field. Second, eqn (2) implies that interfaces can
move by both lipids diffusing to/away from it and by advection.
Third, the local chemical potential along the interfaces is affected by
both the local interface curvature and thermodynamic coupling as
given by eqn (3). Finally, eqn (4) expresses the fact that interfaces,
which are either (a) curved or (b) planar but displaced away from
equilibrium across the leaflets, give rise to the effective body forces
acting upon the fluid membrane. [We note that in cases where one
of the leaflets remains homogeneous, the term involving 4 in
eqn (3) contributes a constant which can be ignored, while the
corresponding term in eqn (4) no longer appears.”]

Before we apply the above S-I limit equations to two represen-
tative examples of compositional interface dynamics, namely (1)
recurrence of interface registration within symmetric membranes
and (2) compositional interface fluctuations within asymmetric
membranes, a few pertinent remarks are in order. First, although
eqn (2)-(4) explicitly depend on y;,, once a specific coupling term g
is chosen, the resulting expressions can be written solely in terms of
physical parameters, as will be demonstrated below. Second, in
deriving eqn (1)-(4), we have treated the thermodynamic coupling
as a weak perturbation. In the case of strong coupling, which
induces significant compositional variations and additional inter-
faces within the displaced domains, these equations can still be
applied within each “sub-domain”, once the parameters ¢; and
fields vy (Which now depend on /) appearing in the expressions
have been evaluated numerically.

Recurrence of interface registration in
symmetric membranes

When initially registered domains are displaced relative to each
other, recurrence of interface registration takes place. Since in
experiments, circular domain morphology has been most often
observed,>>” we will study the dynamics of this process for circular
domains, which admit explicit analytical solutions in the case of
weak thermodynamic coupling.

Here we consider only one domain on each layer and ignore the
solvent effect for simplicity (see Fig. 2A for a schematic). We assume
that the domains maintain a circular shape with radius R
throughout the relaxation process. Initially, one of the registered
domains is displaced relative to the other by Ak(0) in the x-direction.
In order to derive an equation of motion for Ah(z), we will consider
contributions from advective and diffusive lipid transport sepa-
rately. For the advection part, we first evaluate the net force on one
of the domains for a given configuration from eqn (4), which is
d u dz//IO ag
* du 0y,

+ . . .. .
where [ denotes an integration across the compositional interface.

=)

Fe =R [T Wedudf= AR [ (jj )cosede,

Then, by introducing a hydrodynamic drag coefficient A(R, Ah),
which depends on both domain radius R and distance between
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Fig. 2 Schematic of different compositional interface problems considered in
this work. In the case of recurrence of interface registration of domains (A), the
compositional domains are initially displaced by an amount Ah, and migrate back
towards the registry due to the thermodynamic coupling between the leaflets.
For the interface fluctuation problem in (B), domains form only within one of the
leaflets, while the other remains homogeneous. Here, a curved interface will relax
towards a planar one due to line tension.

domains Ak, we obtain the advective contribution to the velocity of
approach as v,q, = F,/Ar(R, Ah). Next, for the diffusion part, we solve
V2u; = 0 for an isolated circular domain embedded within an
infinite matrix, subject to the boundary conditions from eqn (3). In

particular, it can be shown that u; =4, + >, A, (E) cos(nf)

© R "
whenr=Randu; =Ao+ >, ,An (;) cos(nd) when r = R, where

1 27T 1 27T
Ay =— ‘ wylinedd and A, = = J 4 |ine cos(nd)dé. By using the
2m Jo T Jo

. M [0, |~

boundary conditions vdf(#) = = |°L|  from eqn (2) and the
Ay | du ],

relationship ~ vgr = 7 ["vdT(f)cos dF,  we obtain

oMyA [P (T7 L dyy, 9
Vi = ——— J (J dy 210 —g) cos 0dé due to diffusion
TR(AY;)" Jo —w du
alone.” Finally, combining the advective and diffusive contribu-
tions, we obtain

21 o
dAh 24 wR ZdODJ +J
At

daan 24 dyyo ai
dr TR [Ar(R, Ah)

“Cdu ayp,

cos 6d4,

&)

in which we have used the relationship Mo = d,D(Ay)*,*® where d,
and D denote the capillary length and lipid diffusion coefficient,
respectively. Note that the thermodynamic coupling term implicitly
depends on Ah, thus making eqn (5) in general a non-linear
equation.

To make further progress, we will employ a commonly used form
for g, namely a local interaction of the form g{¥/0,/m0) = (V10 — ¥ir0)/
A>3 In the S-I limit, where we can approximate ¥y, and ¥ as
step functions, it is straightforward to simplify eqn (5) to yield

djAn| 24 [ 4mR SdOD} 1_<Ah

2
A&~ mRMRAN o ﬁ) x 6(|a%), (©)

where ©(x) denotes the unit step function such that ® = 1 for x >
0 and zero otherwise, and A%(0) < 2R to guarantee non-zero initial
overlap. Due to the hydrodynamic interaction between the domains,
we have been unable to derive a closed-form expression for A with
an arbitrary Ah. However, an explicit expression can be derived for
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the case of perfect overlap (i.e., Ah = 0). By following the approach in
ref. 24, we can explicitly solve the hydrodynamic equations to yield
Ar(R,0)= Ay = 4Ty (%VZ + Ig)l((:))
K, and K; denote the modified Bessel functions of the second kind
of orders zero and one, respectively.”® Note that in the limit R < R,,
where R, = /1y /2T, Jx = 4mnu/[In(2R/R) — v], where vy = 0.577...
denotes the Euler's constant, while in the opposite limit R >> R, Ay

), where v=R+/2I'/ny, and

employing the approximation Af{RAR) = i
eqn (6) can be now  explicitly solved to

yield %I(;) =sin {arcsin (AZ;O)> (1 - rir)} )

Ah(0 4 8d,D
T, =arcsin L Al —+ 0
2R dr TR0

takes for the shifted domains to return to the registry. By employing
representative values for the parameters appearing in 7, namely
AR(0)=R, IT'=10°Pasm ', ny=10°Pasm,d, =10 °m,D =
1002 m*s™, ¢ =10""N, and 4 = 10"* J m %, we obtain 7, ~
10~* s for R =10 nm and 7, ~ 10” s for R = 10 pm. It is interesting
to note that the sliding of the two leaflets and diffusion within
each leaflet give rise to comparable contributions to 7, above in
the case of liquid domains.

Interestingly, Pantano et al. have recently studied the dynamics
of domain registration via coarse-grained MD simulations.'® In their
work, simulations were employed to evaluate the effective coupling
strength /. By employing the values /1 = 10~ >J m™~>and 7, = 3.3 x
10~ s for domains of size R = 4 nm as reported by Pantano et al., we
can employ our expression to compute the frictional coupling
strength between the leaflets (which was not reported) to be I' =
10® Pa s m™ ", which falls right into the reasonable range of exper-
imental measurements.”** Perhaps more importantly, by experi-
mentally measuring the registration kinetics of initially displaced
circular domains, one can quantify the magnitude of the coupling
coefficient /1 by employing eqn (6), once the other relevant physical
parameters (D, a, dy, 7v, and I') have been determined indepen-
dently. Of course, one can in principle experimentally measure /1 by
quantifying the out-of-registry fluctuations between the domains, as
discussed by Putzel et al.;*> however, fluctuations are expected to be
very small in magnitude (~1 nm), which poses significant experi-
mental challenges.

where

denotes the time it

Compositional interface fluctuations in
asymmetric membranes

Finally, to further highlight the generality of the S-I limit equations
[i.e., eqn (1)-(4)], we discuss the case of interface fluctuation within
asymmetric membranes as the second example. Here, we will
consider one experimentally observed case (see, e.g, ref. 5), where
one of the leaflets remains homogeneous while the other one
contains compositional domains, as illustrated in Fig. 2B.

Starting from a gently undulating interface, the fluctuation
amplitude decays to zero driven by line tension. Assuming a sinu-
soidal form h = h, exp(iwgt + ikx) for the interface fluctuation, the
goal is to compute the decay rate iw; versus wave number k.

This journal is © The Royal Society of Chemistry 2013
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Following the procedure outlined previously,”® by solving the
coupled hydrodynamic equations for the two leaflets and solvent as
well as eqn (1)-(4), we obtain

40
ok’ ‘ a dg

— — 2Ddyk? 7
27.C aja; — 1—'2) (1 +qz) 0 ) ( )

i, = —

where @y =mynk?(1 + §) + ngnky/1 4+ §* + I'? To illustrate the
new physics contained in eqn (7), we will consider the case in which
the homogeneous layer is effectively immobile (for example, due to
a solid support) and choose 7y, = © correspondingly. In this case,
ag

3 —_—
ot 2Dd0>k when k—0. (8)

iwp= — <

Thus, both lipid diffusion and sliding of the two leaflets relative

to each other contribute ~k* terms to the decay rate. This behavior
should be readily observable in supported membranes.

Conclusion

In this work, starting from a diffuse-interface approach, we have
derived the general equations that describe the dynamics of
compositional domains within symmetric or asymmetric lipid
bilayer membranes in the presence of a thermodynamic coupling
between the leaflets. The general equations were then employed to
quantify the dynamics of the recurrence of registration for circular
domains in the case of weak coupling. It was shown that experi-
mentally measuring these dynamics would enable one to determine
the strength of the thermodynamic coupling between the leaflets. A
closed-form expression for the decay rate of interface fluctuations,
in the case in which only one leaflet supports compositional
domains, was also derived.
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