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Abstract. The Rayleigh–Taylor instability (RTI) is a fundamental fluid
instability that occurs when a light fluid is accelerated into a heavier one. While
techniques for observing the RTI in classical fluids continue to improve, the
instability has not been demonstrated in quantum fluids. Here, we exploit the
formal equivalence between condensed matter and coherent nonlinear optics
to observe the superfluid-like instability directly in the optical system. For the
RTI, an initial refractive index gradient sets the acceleration, while self-induced
nonlinear interactions lead to velocity differences and shear. The experimental
observations show that density fingering is always accompanied by vortex
generation, with perturbation modes following a hybrid dynamics: horizontal
modes (along the interface) propagate as an incompressible fluid, but the vertical
length scale (mixing length) is set by compressible shock dynamics. The growth
rate, obtained analytically, shows that inhibition due to diffraction has the same
spectral form as viscosity and diffusion, despite the fact that the system is
dispersive rather than dissipative. This gives rigorous support for the observation
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that turbulence in quantum fluids has the same scaling as turbulence in normal
fluids. The results hold for any Schrödinger flow, e.g. superfluids and quantum
plasma, and introduce a new class of fluid-inspired instabilities in nonlinear
optics.
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Stratified flow, which occurs whenever adjacent layers in a fluid have a density or velocity
difference, is fundamental to fluid dynamics. For normal fluids, the corresponding instabilities
are textbook problems [1]: thermodynamic fluctuations trigger the growth of perturbations,
whose spatial scale is set by the resistive forces of viscosity or surface tension. Accelerated
interfaces, in particular, plague many classical flows [2, 3]. However, the initial metastable
state of layered fluids is difficult to set up experimentally, while dissipation makes it difficult
to compare measured values with ideal fluid predictions [4]. Superfluids provide a naturally
ideal situation, but their transport dynamics are different: the temperature is ideally zero and
the coherent/condensed waves experience no viscosity. As a result, instability dynamics for
these systems have received far less attention [5–9]. Nevertheless, interface issues will become
increasingly problematic for the atomic community as quantum fluids are transported and
mixed [10, 11].

Linearized Schrödinger theory suggests that viscosity is replaced by diffraction, i.e. the
(frictionless) opposition to wavefunction localization [5, 6], but nonlinearity is necessary as
well, as interactions determine the condensate pressure [12–14], coupling between layers [15],
etc. Here, we construct an optical system equivalent to a ground-state superfluid [16] that
allows the observation of the ideal Rayleigh–Taylor instability (RTI) [17, 18] as a function of
density (intensity) difference, internal pressure (nonlinearity) and acceleration (refractive index
gradient). In parallel, an analytic theory is developed that collapses the parametric studies into
a single unified scaling law. The results highlight the role of wave/phase diffusion in quantum
transport and give insight into the onset and statistics of superfluid turbulence.

1. Theoretical background

Perfect quantum fluids, in which all the atoms have condensed into the ground state ψ , may be
described by the Gross–Pitaevskii equation [12–14]:

ih̄
∂ψ

∂t
+

h̄2

2m
∇

2
⊥
ψ+V (x)ψ+γ |ψ |

2ψ = 0, (1)
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where h̄ is Planck’s constant divided by 2p, m is the mass of each particle, V is an external
potential and γ measures the strength of (mean-field) interactions. This nonlinear Schrödinger
equation is an excellent approximation for Bose–Einstein condensates [19] and is often used to
describe superfluids when the normal fluid component is not important [20].

Here, we construct an optical system equivalent to a ground-state superfluid by considering
a beam propagating in a nonlinear Kerr-like medium [16]. To focus on spatial dynamics only, we
consider monochromatic light of a fixed frequency, so that there is no formal time dependence.
Paraxial propagation along the axis z is then well described by the nonlinear Schrödinger
equation

i
∂ψ

∂z
+∇

2
⊥
ψ/2k0+n(y)ψ+γ |ψ |

2ψ = 0, (2)

where ψ is the slowly varying amplitude of the optical field, k0 = λ0/n0 is the wavenumber
in a material with base index of refraction n0, λ0 is the wavelength in free space, n(y) is an
imposed refractive index profile, and γ measures the nonlinear index change induced by the
light intensity (γ < 0 for defocusing). The nonlinear response of the photorefractive crystal
used in the experiments below is similar, with the coupling strength γ being controllable by an
applied voltage.

It is clear that equations (1) and (2) are identical, with propagation along z replacing
evolution in t, wavenumber replacing mass and index of refraction acting as a potential.
Therefore, the two equations must support the same type of energy flow. A fluid interpretation
follows by applying the polar (Madelung) transformation [21] to equation (2), where ρ = |ψ |

2

is the intensity and S is the coherent phase of the wave function. Scaling then gives

∂ρ

∂z
+∇⊥ (ρu)= 0, (3)

ρ

(
∂u

∂z
+u∇⊥u

)
= −∇⊥ P − ρg+

1

2
ρ∇⊥

(
1

√
ρ

∇
2
⊥

√
ρ

)
. (4)

This set of equations is a nonlinear eikonal representation, expressing the conservation of
intensity (density) ρ and momentum ρu, where u = ∇⊥S is the direction of energy propagation.
In optical terms, the pressure P = |γ |ρ2/2 arises from a self-defocusing nonlinearity and an
effective gravity g = ∂n(y)/∂y is provided by a refractive index gradient. The last term in
equation (4), known as ‘quantum pressure’ in condensed matter systems, has the highest-order
derivatives and regularizes the system. It is an unusual regularization, in the sense that it is
a function of density only and yet appears in the velocity equation (in contrast with normal
gases and fluids, which have diffusion in the density equation and viscosity in the momentum
equation). Without the quantum pressure, equations (3) and (4) represent ideal Eulerian flow,
and there would be no limit to the amount of energy that could accumulate in small spatial
scales. For example, shock waves would develop infinitely sharp fronts and instabilities would
have perturbation growth at arbitrarily short wavelengths.

2. Dynamics of the Rayleigh–Taylor instability

The basic quantum RTI was considered by Bychkov et al [5], who followed the usual
hydrodynamic practice of assuming an initial mechanical equilibrium (obtained by setting
the forcing terms in the rhs of equation (4) to zero) and incompressible flow (∇ · u = 0). As
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diffraction prevents an ideal step initial condition, we consider a smooth, exponential transition
region between the two densities/intensities. The resulting growth rate ω for perturbations is
given by [5]

ω2
=

1
2 g (αL) kx −

1
4α

2k2
x , (5)

where α = 1/ρ0 (dρ0/dy) and L is the characteristic width of the interface (e.g. the linear
healing/diffraction length). For long-wavelength perturbations, kx/α � 1 and kx L � 1, the
density differential may be approximated by the difference, reducing equation (5) to ω2

=

g(At)kx −α2k2
x/4, where the Atwood number At = (ρH − ρL)/(ρH + ρL). In this form, the

growth rate (5) consists of two parts: the classical Rayleigh–Taylor growth rate [17, 18] and
a restorative term due to diffraction [5]. Interestingly, the quadratic (k2

x) dependence of the
resistance is more reminiscent of diffusion [22] than the cubic dependence indicated by equation
(4) and is typical of non-dissipative terms, such as curvature from surface tension [1]. This
suggests a reason why superfluid turbulence, which can be triggered by the RTI, has the same
Kolmogorov scaling law [23, 24] as normal fluids (although fluctuations about this mean may
be different [25]).

On the other hand, the diffractive form of the result does not include nonlinearity,
apparently violating the rule that linear systems are always stable (there is no mode coupling and
thus no possibility for wave growth). This ‘violation’ is an artifact of the (nonlinear) Madelung
transformation and simply states that different spatial modes of the initial interface jump
propagate (diffract) at different rates. More serious is the presence of dispersive shock waves
(DSWs), which always occur across a step of different intensities/densities [16, 26–33]. These
prevent any initial mechanical equilibrium (which can be accommodated by translating to a
frame in which the interface is moving [34]) and make the assumption of incompressibility quite
suspect. Below, we show experimentally that treating α as a dynamic variable self-consistently
remedies all of these issues.

3. Experimental mapping

As described above, the RTI is created by accelerating a fluid into one that is denser. The
optical version uses a refractive index gradient to drive together light of different intensities.
The experimental setup is shown in figure 1. The high/low intensity input is created by
sending 532 nm laser light into a step-index filter and imaging the interface between different
attenuation strips. The acceleration is created by passing an ordinarily polarized plane wave
through a continuously varying attenuator and imaging it into a photorefractive crystal; due
to nonlinearity, the input intensity gradient creates a refractive index gradient in the medium
[35, 36], so that wherever the light is, it always ‘sees’ an area of higher index beneath it.

The material of choice is an 8 × 8 × 8 mm SBN:75 (Sr0.75Ba0.25Nb2O6) photorefractive
crystal. For this crystal, the nonlinear index change 1n = −(1/2)n3

0ri j Eapp Î/(1 + Î ), where
n0 = 2.3 is the base index of refraction, ri j is the appropriate electro-optic coefficient with
respect to the applied field Eapp and the crystalline axes, and the intensity Î = |ψ |

2 measured
relative to a background (dark current) intensity [37]. While this nonlinearity is saturable, the
defocusing parameters used here minimize the difference between the photorefractive and Kerr
cases [16].

In contrast to the gradient beam, which propagates almost linearly through the crystal,
the fluid-like signal wave is extraordinarily polarized and highly nonlinear (r33 = 1340 pm V−1
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Figure 1. Experimental setup. Light from a 532 nm laser is split into two beams:
one to induce an acceleration potential and one to create a high/low (H/L) density
difference. (a) Potential beam: a uniform refractive index gradient is optically
induced in an SBN photorefractive crystal by a continuously varying neutral
density filter. Different gradients of the refractive index are shown on the right.
(b) A high/low (H/L) intensity interface is created by a step-index filter. Beams
(a) and (b) are then combined onto the SBN crystal (c). The nonlinear interaction
and pressure are controlled by applying an electric field across the crystal (d).
Light exiting the crystal is then imaged by a CCD camera. BS: beam splitter;
M: mirror; SF: step filter; CF: continuous filter.

versus r13 = 60 pm V−1). Moreover, the internal pressure of the light waves can be controlled
by adjusting the self-defocusing bias voltage applied across the crystalline c-axis. The largest
nonlinearity corresponds to the largest voltage and intensity, which in our system is 1n/n0 =

−2 × 10−4.
Light exiting the crystal is imaged into a CCD camera. The degree of acceleration is

calibrated by measuring the deflection of a low-intensity signal wave. For the experiments with
changing voltage, which also changes the strength of the optical induction, the gradient filter
is adjusted to maintain a constant acceleration. The velocity (gradient in phase) is identified
directly by interfering the output with a reference plane wave.
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Figure 2. All-optical Rayleigh–Taylor instability. (a)–(d) Basic instability.
(e)–(h) Stable cases with different initial conditions. (a), (c) Simulated input
and output for unstable conditions, with nonlinearity and acceleration both
present. (b), (d) Experimental input and output for unstable conditions. Stable
calibrations: (e) linear output with no index gradient, (f) linear output with
gradient, (g) nonlinear output without a gradient and (h) the full system with
reversed gradient (a ‘light’ optical fluid atop a ‘heavy’ one). (g) Gradient of the
refractive index; NL: nonlinearity. The scale bar in (b) is 100µm.

4. Experimental results

The dynamics of the interface was tested as a function of all the driving parameters. The basic
instability is shown in figure 2. In response to the index gradient and nonlinearity, the interface
buckles, creating the interpenetrating fingers characteristic of the RTI. As a test of these factors,
calibration runs were performed for the individual parameters in equation (4). In the linear case,
without ‘gravity’, the interface is stable and simply diffracts (figure 2(e)). Adding the index
gradient causes a small drift downward (figure 2(f)). In the nonlinear case, without gravity
(figure 2(g)), the step difference in pressure leads to a translation of the interface, with intensity
oscillations along (but not perpendicular to) the index gradient [16]. These spatially dispersive
shock waves occur whenever interactions act in the same direction as dispersion/diffraction and
are the dominant mode of transport in dissipationless systems [16, 26–33]. We show below that
these shock waves set the characteristic length scale for the mixing layer when instability is
present, but by themselves they are relatively stable to transverse perturbations [16]. Only when
both the nonlinearity and index gradient are present does an instability form (figure 2(b)). For
the inverse scenario, in which the dense component is beneath the lighter one, the interface is
stable (figure 2(h)).

New Journal of Physics 14 (2012) 075009 (http://www.njp.org/)

http://www.njp.org/


7

Figure 3. Observation of vortices and measurement of perturbation fingers. (a),
(b) Optical vortices, identified by their characteristic phase splitting, appear
along the edges of the density fingers. (a) Output intensity picture of the
instability, as in figure 2(d). (b) Magnified interferogram of the output, formed
by interfering the nonlinear output in (a) with a reference plane wave. Arrows
point to the locations of the optical vortices. (c) Ratio between finger widths and
perturbation periods as nonlinearity is increased. For sinusoidal perturbations
(formed by weak nonlinearity), the ratio is 0.5. (d) Measurement of finger lengths
with different intensity ratios 4:1, 10:1 and 25:1. The solid black lines are fits
according to the predicted scaling, where a = 44 µm is a constant determined
by the lower intensity and b = 0.98, 0.92 and 1.00 for the ratios 4:1, 10:1 and
25:1, respectively. The scale bar in (a) is 100µm and in (b) is 15µm.

The instability can be characterized by considering the width, spacing and length of
the perturbation fingers (figure 3). In normal fluids, viscosity or surface tension sets the
characteristic spatial scale [1]. Initial perturbations are periodic, meaning that the finger width
is half their period. Longer evolution times lead to growth and narrowing of the fingers; if the
driving force is strong enough, the resulting shear will overcome resistance and create vortices
along the edges. In Schrödinger fluids, the lack of viscosity means that nonlinearity is dominant
from the very beginning of flow. We observed vortices at the output for every unstable initial
condition, accompanied by narrowing of the fingers as the nonlinearity increases [38]. As shown
in figure 3(b), the vortices, identified as forked discontinuities in the phase of the coherent wave,
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Figure 4. Experimental measurements of the characteristic perturbation period.
(a) Measured perturbation period as a function of intensity difference and
acceleration, for a fixed voltage bias (nonlinearity) of 450 V. (b)–(d) Data in
(a) scaled according to equation (5). (b) Scaling done with the density prefactor
given by the Atwood number (ρH − ρL)/(ρH + ρL) and the length scale given
by the diffusion/healing length a = 44µm. (c) Scaling done with the density
prefactor given by the Atwood number and length scale given by the shock
length measured in figure 3. (d) Scaling done with the density prefactor given by
the exponential transition ln(ρH/ρL) and the length scale given by shock length
measured in figure 3.

outline the edges of the fingers much more distinctly than the intensity pattern (figure 3(a)).
Consequently, all measurements of the characteristic scales are made using this technique.

A particular region of interest is the mixing layer, in which the two (optical) fluids
interpenetrate. A direct measurement of the finger lengths (figure 3(d)) shows that the length

follows the nonlinear scaling relation L = a+b
√
γρH/ρL, where a = L

√
n3

0r33 EappρL/2 =

44µm is a dimensional scaling constant that represents the intrinsic (diffracting or healing)
width of the interface and b ∼ 1 (0.98, 0.92, 1.00 as shown in figure 3). This is the same
scaling as that found for a step intensity change without acceleration [16, 29, 30, 33], despite
the generation and shedding of vortices.

To explore the general features of quantum RTI, we fix the applied voltage across the
crystal at −450 V, so that changes in the nonlinearity (interaction strength) are due to the initial
intensity difference only. Figure 4(a) shows the characteristic instability period as a function of
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acceleration and initial intensity jump. As the driving forces become stronger, the perturbations
grow with higher energy (higher spatial frequency or smaller characteristic period). At first
sight, the spread in data suggests that the variables are independent. However, equation (5)
suggests that there is a maximum growth rate, obtained by setting dσ/dkx = 0, corresponding
to a dominant mode kmax

x = (gαL)/α2 in the dynamics. This dominant mode depends sensitively
on the choice of parameters, in particular the strength and characteristic length of initial density
difference. Different choices for these parameters are shown in figures 4(b)–(d).

Figure 4(b) shows the incompressible limit first derived by Bychkov et al [5]. As discussed
after equation (5), the density prefactor is given by the Atwood number, while the decay rate is
given by the (constant) diffraction length L = a. There is a clustering of the data, except for the
strongest nonlinearity (smallest period), but no true collapse.

Figure 4(c) shows the Bychkov result when the measured shock length is used to determine
α. In this case, the Atwood prefactor causes the data to separate, with trends no better than the
raw data given in figure 4(a).

Figure 4(d) shows the hybrid compressible–incompressible limit suggested by the
experiments. The density prefactor αL is given by ln(ρH/ρL), which is exact for an
exponentially decaying transition region, while the decay rate is taken from the measured shock
lengths of figure 3(d). In this case, there is a clear collapse of the data onto a straight line.

5. Discussion

The analysis above suggests a rather straightforward evolution of the instability: the generation
of intensity fingers followed by shear-induced vortex formation along their edges. Initially, noise
creates perturbations which have a momentum component in the direction of the index gradient.
By Snell’s law, these spots of light will bend downwards, into an area of higher index. This
will create an even larger angle of incidence, causing more bending, etc. Along the intensity
fingers, the relative velocity flow will create vortices due to a superfluid Kelvin–Helmholtz
instability [7]. Alternatively, the intensity/density difference between the inside and outside
of each finger creates an effective potential well (relative index difference), inducing vortex
formation along its boundaries [39].

However, there is another pathway to vortex generation which must be considered: the
snake instability of a dark stripe [40–43]. There is no such stripe initially, as the input phase
is constant across the interface, but there are two ways in which it can form: relative slipping
between the top and bottom fields and dynamic generation as the leading edge of a spatially
dispersive shock wave (DSW). In the former scenario, the two intensities (densities) slip along
each other and propagate separately, with the upper one acquiring a faster phase than the lower
one. Eventually, there will be a p phase difference between them, creating a dark stripe at the
interface due to destructive interference. We note, however, that the snake instability works best
at high nonlinearity, when both the upper and lower branches have the same intensity [41]. For
the conditions here, snaking occurs very slowly. To check this, we removed the index gradient
and introduced an initial p phase difference between the branches (not shown); even for equal
intensities, with the nonlinearity at its highest value, we saw no evidence of kinks.

The phase-slipping scenario is also unlikely because we are in a gravity-dominated regime
(by design), which makes motion normal to the interface the most significant driving factor. On
the other hand, the interface has the step initial condition of a shock wave, whose oscillating
front resembles a train of dark solitons. While the transverse instability of DSWs can follow
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from the dynamics of their dominant soliton [44, 45], simulations of transonic stripes has shown
that the evolution of the modulations can be vortex-free [46]. Further, there are many situations,
such as tunneling [47], in which the full structure of the DSW must be considered. Indeed,
experiments on DSW propagation and collisions performed using the same crystal as the one
here have suggested a surprising robustness, if not absolute stability, of shock waves without
acceleration [16]. For this reason, and the success of the scaling results above, we conclude that
the nonlinear observations here result from a direct intensity or momentum fluctuation, rather
than a secondary instability arising from a dark stripe.

Compressibility plays an interesting role in these experiments. Its influence can be seen
by comparing the growth rate of a sinusoidal interface perturbation with wavelength l, ωg ∼

(g/ l)1/2, to the relaxation rate of density waves at the same wavelength ωs ∼ cs/ l, where
cs ∼ 2µm mm−1 denotes the effective sound speed. Simple scaling suggests that compressibility
effects should become dominant when ωs ∼ ωg, or l ∼ l∗

� c2
s/g. For the system here, l∗ is

of the order of 4µm, while the measured perturbation periods are of the order of 100µm,
implying that the instability dynamics should be fully compressible. As shown by equation (5)
and figure 4, however, compressibility appears dominant only in one direction, normal to the
interface. Physically, this follows by realizing that shock dynamics requires an initial density
difference [16]; for the basic RTI geometry, such a jump occurs across the interface but not
along it.

We emphasize that compressibility is a singular perturbation, involving directly the
equation of state (and thus nonlinearity), and that even in normal fluids, including
compressibility is a difficult and somewhat controversial task [48]. The consensus is that
compressibility suppresses the RTI, as energy that would drive perturbations is now redirected
into squeezing the fluid [49, 50]. However, other arguments suggest that the finite sound speed
from compressibility causes energy to accumulate near the interface (rather than radiate from
it), thus destabilizing the flow [51, 52]. Here, the observations suggest that compressibility is a
destabilizing influence in quantum RTI, as the initial shock wave enables the interface to travel
faster than it would without the shock. As this transport occurs in the same direction as ‘gravity’,
the end result is a higher effective acceleration, resulting in a higher-energy perturbation. While
the gain formula (5) captures the essence of these results, simply by substituting the appropriate
shock length, a more quantitative explanation of our experimental observations can only be
provided by a more complete theory of compressible Schrödinger flow, which is yet to be
developed.

Finally, we note that the general form of the equations and experimental setup means that
the approach here can be extended in many possible ways, including flow with multiple layers,
fully three-dimensional dynamics and partially condensed (statistical) systems. It also suggests
that light–matter interactions in more general environments, such as optofluidic systems, can
be treated using a unified language in which the fields are regarded as equal components in a
multispecies fluid, rather than as separate entities.

6. Conclusions

We have used a coherent optical system to experimentally explore the dynamics of the superfluid
RTI. Parametric studies were conducted with density difference, acceleration and nonlinear
interaction strength, revealing behavior that was compressible across the interface but effectively
incompressible parallel to it. In particular, data collapse occurred when shock-like scaling for
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the mixing layer was substituted into the incompressible gain formula. The results hold for any
Schrödinger fluid, e.g. superfluids and quantum plasma, and lay the foundation for a variety of
fluid-inspired instabilities in optics.
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