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Thermodynamic phase diagrams of alloys are usually computed or experimentally determined under
the assumption of perfect crystallinity of the material. Here, we show that dislocations can change
the phase stability of alloys and increase the size of the miscibility gap. This dislocation-induced
destabilization of the alloy originates from an interaction between the elastic fields of the
dislocations and those due to composition variations. We predict that the characteristic time scale for
the growth of compositional fluctuations depends inversely on the dislocation mobility.
© 2005 American Institute of Physics. fDOI: 10.1063/1.1922578g

Determining the equilibrium phase diagrams of materials
and the mechanisms by which equilibrium is achieved is a
fundamental area of research, with an impact on materials
technology. Most theoretical calculations of phase diagrams
assume perfect crystallinity of the material; however, such
perfect crystals are difficult to obtain and study experimen-
tally, and most materials contain various defects. Of these,
dislocations are ubiquitous, and because of the long-range
elastic fields that they create, they can strongly affect phase
stability.

This is the case in alloys which undergo spinodal decom-
position with unequal lattice spacings within the composi-
tional domainss“misfitting alloys”d. In these alloys, there
generally exist two spinodals, namely the so-called “coher-
ent” and “chemical” spinodals, respectively.1 The coherent
spinodal describes the phase stability of domains which are
coherentsand hence strainedd across the compositional inter-
faces, while the chemicalsor thermodynamicd spinodal dic-
tates the thermodynamics of the alloy where interfacial misfit
dislocations have relaxed these coherency strains. Although
the presence of these spinodals in misfitting alloys is well
known, the effect of dislocation mobility on phase stability
within the chemical spinodal has not been investigated. To
this end, here we present a stability analysis of the early time
evolution of a binary alloy in the presence of mobile dislo-
cations due to, e.g., prior cold work. We show that a binary
alloy outside of the dislocation-free miscibility gap can be
destabilized by dislocations, and quantify how the presence
of mobile dislocations modifies the dispersion relation.

We now introduce our theoretical approach. The binary
alloy is described by a continuous compositionc(r) and a
continuous Burger’s vector densityb(r) ,2 and the misfit be-
tween the two alloy elements is modeled as a linear depen-
dence of the lattice constant on the composition. Thus, both
the dislocation and composition fields lead to elastic dis-
placements in the system. The free energy consists of three
terms, F=Fc

0hcj+Fb
0hbj+Felhuj, representing the free en-

ergy due to composition variations in the absence of misfit,
the dislocation core energy, and the elastic free energy due to
elastic displacementsu. By assuming that elastic relaxations

are much faster than composition or dislocation diffusion, we
eliminateu by solving the mechanical equilibrium equations
with instantaneous composition and dislocation density
profiles.3 Substituting the obtainedusc,bd in Felhuj gives
Fel=Fel

c hcj+Fel
b hbj+Fcouplhc,bj. We adopt a standard

Ginzburg–Landau model forFc
0, giving

Fc = Fc
0 + Fel

c =E drF−
a

2
c2 +

u

4
c4 +

j2

2
u ¹ cu2G , s1d

wherea=a0sTc
0−Td with T the temperature andTc

0 the critical
temperature in the absense of dislocations but renormalized
due to composition strain fieldssi.e., Tc

0 is the coherent criti-
cal pointd, anda0, u, andj are positive constants.4 This ex-
pression forFc provides a simplified but generic description
of the alloy phase diagram.Fb is given by

Fb = Fb
0 + Fel

b =E drFa

2
ubu2 +

1

2Y
s¹2xdd2G . s2d

The first term in Eq.s2d describes the local dislocation core
energy sa is a positive constantd and corresponds toFb

0,
while the second term accounts for the nonlocal elastic inter-
actions between dislocations, and corresponds toFel

b . Y and
xd denote Young modulus and Airy stress function due to
dislocation strain fields, respectively. Under mechanical
equilibrium conditions, the Airy stress function satisfiessRef.
5d ¹4xd=Ys¹xby−¹ybxd. Finally, the interaction between the
composition and the dislocations arises from the linear de-
pendence of the lattice constant on the composition and its
coupling to the local compression¹2xd,

3

Fcoupl= hE drc¹2xd, s3d

whereh is proportional to the misfit between the alloy ele-
ments. The dynamics of the composition and dislocation
density satisfy conservation laws and are given by

]c

]t
= G¹2

dF
dc

, s4d
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]bx

]t
= sGg¹x

2 + Gc¹y
2d

dF
dbx

, s5d

and

]by

]t
= sGc¹x

2 + Gg¹y
2d

dF
dby

. s6d

In Eqs.s4d–s6d, G is the composition mobility whileGc and
Gg are the dislocation mobilities in the climb and glide di-
rections, respectively.

To simplify the analysis of the above equations and to
illustrate the basic effects, we consider the case whereGc
=Gg. Using the transformations c→ suau /ud1/2c, r
→ sj2/ uaud1/2r , t→ sj2/Guau2dt, and b→ suau3/Yj2ud1/2b, xd

→ sYj4/ud1/2xd, and taking¹y of Eq. s5d minus¹x of Eq. s6d,
we obtain the two dimensionlesslinearizedequations

]tdc = ¹2fs±1 + 3c̄2ddc − ¹2dc + gQg s7d

and

]tQ = − msQ − e¹2Q + gdcd, s8d

where dc=c− c̄, Q=¹2xd, and where we have setmc=mg
=m. The new dimensionless parameters areg=hY1/2/ uau1/2,
e=auau /j2Y, andm=Ggj2Y/Guau2. The topsbottomd sign in
Eq. s7d represents temperatures abovesbelowd Tc

0. Equations
s7d and s8d thus contain three dimensionless parameters:g
represents the lattice misfit between the two elements of the
alloy, m represents the ratio of the dislocation mobility to the
composition mobility, ande is the dislocation core energy.

The stability analysis is performed by lettingdc

=eĉsqdeiq·r+ssqdtdq and Q=eQ̂sqdeiq·r+ssqdtdq and solving
for ssqd. Note that because the two variables are coupled,
they evolve with the same dispersion relations and that
positive snegatived values ofs lead to exponential growth
sdecayd of the fluctuations and thus to instabilitysstabilityd.
The two solutions fors are

ssqd =
1

2
fs71 − 3c̄2dq2 − q4 − ms1 + eq2dg

±
1

2
Îfms1 + eq2d + s71 − 3c̄2dq2 − q4g2 + 4mg2q2.

s9d

In the absence of coupling between the dislocations and
composition,g=0, the solutions aressqd=s71−3c̄2dq2−q4

andssqd=−ms1+eq2d. The first of these is the dispersion for
the alloy without dislocations, which is positive in a range of
q when the alloy is inside the dislocation-free
scoherentd spinodal. The second relation is the dispersion
for the dislocations in a homogenous system, which is al-
ways negative.

In the presence of the couplingg, the behavior can be
understood by performing an expansion ofs in the long-
wavelength limitq→0. For a nonzero dislocation mobility
m.0, a straightforward calculation yields

ssqd = s±1 − 3c̄2 + g2dq2 + Osq4d. s10d

Because theOsq4d terms are always negative, a necessary
condition for an instability is for the coefficient ofq2 to be
positive. Setting this coefficient to zero leads to the new
spinodal line

T

Tc
0 = 1 +L2 − 3Sc̄ −

1

2
D2

, s11d

where L=Îh2Y/a0Tc
0. The presence of theL2 term in-

creases the size of the spinodal region, as shown in Fig. 1. In
particular, the critical temperature is increased toTc=Tc

0s1
+L2d. Note that the new spinodal line is independent of the
dislocation mobility, as long as it is nonzero. Physically, this
is due to the fact that dislocations with nonzero mobility
adiabatically follow and amplify compositional fluctuations
by relaxing coherency strains in the long wavelength limit
q→0.

For immobiledislocationssm=0d, the dispersion relation
in Eq. s9d reduces to the dislocation-free dispersion. Hence,
while immobile dislocations may locally affect the distribu-
tion of the alloy constituents around them,3,6,7 they do not
shift the location of the critical point. The increase inTc is
ultimately related to the migration of dislocations to compo-
sitional interfaces, which increases the surface tension.8

While the above discussion indicates that any nonzero
dislocation mobility will lead to a mobility-independent shift
of the spinodal line, the dislocation mobility can affect the
rate at which spinodal decomposition proceeds inside of the
new spinodal. This can be higlighted by looking at the dis-
persion relation as a function ofm. Figure 2sad shows the
dispersion for an alloy above the dislocation-free critical
temperature, withg=2 and e=0. Clearly, for any nonzero
mobility m, there is a region of wavevectorsq where the
dispersion is positive; while the size of this region is inde-
pendent ofm, the maximum value of the dispersionsmax
depends onm. Figure 2sbd indicates that the characteristic
time scalet=1/smax for the growth of compositional fluc-
tuations depends strongly on the dislocation mobility. For
small dislocation mobilities,t diverges as 1/m. For largem,
t saturates to a value independent ofm. Indeed, in the fast
dislocation limit Eq.s8d gives a solution forQ that is inde-
pendent ofm, and tm→`=4/sg2−1d2. The value ofq that
gives the maximum in the dispersion relation,q* , determines
the most unstable wavelength of the instability,l=2p /q* ,
i.e., the composition pattern wavelength at early times. Fig-
ure 2sbd showsl as a function of the dislocation mobility,
indicating that it is much less sensitive to the dislocation
mobility thant, the dependence being close tol,m−1/4.

FIG. 1. Spinodal line for the binary alloy in the presence of dislocations
ssolid lined and without dislocationssdashed lined.
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A parameter of importance in the current model is the
core energysi.e., the energy cost of forming dislocationsd e.
To illustrate the role of this parameter, Fig. 3sad shows the
dispersion relation forg=2 andm=1 for different values of
e. It is clear from the figure that the maximum ofs, the most
unstable wavevector and the range of unstable modes de-
crease with increasinge. Thus, the energy cost of forming
dislocations impedes the spinodal decomposition. This is a
consequence of the competition between a decrease in total
energy due to the coherency strain relaxation and an increase
in the total energy due to dislocation cores. The dependence
of t andl on e is shown in Fig. 3sbd which shows that the
time scale for phase separation increases linearly with the
dislocation formation energy, with a similar behavior forl.

The effects described here should be most clearly ob-
servable in alloys with a large misfit, such as Al–Zn, for
which sTc−Tc

0d /Tc
0<0.07 andL<0.27.9 By subjecting the

alloy to prior cold work and annealing at a temperature be-
tween the chemical and coherent critical temperatures, our
predictions for the dispersions can be directly tested by
scattering experimentsssee, e.g., Refs. 9 and 10d.

In summary, we have demonstrated that mobile disloca-
tions modify the phase stability of binary alloys, leading to

an increase in the size of the miscibility gap. We hope that
this work will stimulate experiments and further theoretical
considerations to correlate phase transformation behavior
and dislocations.
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FIG. 2. Panelsad shows the dispersion relation for different values of the
dislocation mobility. Panelsbd shows the time scale for spinodal decompo-
sition and the most unstable wavelength as a function of the dislocation
mobility.

FIG. 3. Panelsad shows the dispersion relation for different values of the
dislocation formation energy. Panelsbd shows the time scale for spinodal
decomposition and the most unstable wavelength as a function of the dislo-
cation formation energy.

181909-3 F. Leonard and M. Haataja Appl. Phys. Lett. 86, 181909 ~2005!

Downloaded 02 May 2005 to 128.112.36.249. Redistribution subject to AIP license or copyright, see http://apl.aip.org/apl/copyright.jsp


