
Biomolecular condensates
- R. Zhang, S. Mao, and M. P. Haataja, “A minimal model for liquid-liquid phase separation and aging of chemically reactive macromolecular mixtures”, arXiv (2022).
- P. Ronceray, S. Mao, A. Kosmrlj, and M. P. Haataja, “Liquid demixing in elastic networks: Cavitation, permeation or size selection?”, Europhysics Letters (2022).
- S. Shimobayashi, P. Ronceray, D. W. Sanders, M. P. Haataja, and C. P. Brangwynne, “Nucleation landscape of biomolecular condensates”, Nature (2021).
- S. Mao, D. Kuldinow, M. Haataja, and A. Kosmrlj, “Phase behavior and morphology of multicomponent liquid mixtures”, Soft Matter 15, 1297 (2019).
- Y. Shin, Y.-C. Chang, D. S. W. Lee, J. Berry, D. W. Sanders, P. Ronceray, N. S. Wingreen, M. Haataja, and C. P. Brangwynne, “Liquid nuclear condensates mechanically sense and restructure the genome”, Cell 175, 1481 (2018).
- J. Berry, C. P. Brangwynne, and M. Haataja, “Physical principles of intracellular organization via active and passive phase transitions”, Reports on Progress in Physics 81, 046601 (2018).
- Y. Shin, J. Berry, N. Pannucci, M. Haataja, J. E. Toettcher, and C. P. Brangwynne, “Spatiotemporal Control of Intracellular Phase Transitions Using Light-Activated optoDroplets”, Cell 168, 1-13 (2017).
- J. Berry, S. C. Weber, N. Vaidya, M. Haataja, and C. P. Brangwynne, “RNA transcription modulates phase transition-driven nuclear body assembly”, Proceedings of the National Academy of Sciences, 112 (38), E5237-E5245 (2015).

Low-dimensional materials
- Y. Xia, J. Berry, and M. Haataja, “Defect-enabled phase programming of Transition Metal Dichalcogenide monolayers”, Nano Letters 21, 4676 (2021).
- Y. Xia, R. S. Davis, and M. Haataja, “Strain Relaxation in Misfitting Transition Metal Dichalcogenide Monolayer Superlattices: Wrinkling vs Misfit Dislocation Formation”, Nano Letters 19, 8724 (2019).
- J. Berry, S. Zhou, J. Han, D. J. Srolovitz, and M. P. Haataja, “Domain morphology and mechanics of the H/T’ transition metal dichalcogenide monolayers”, Phys. Rev. Materials 2, 114002 (2018).
- J. Berry, S. Zhou, J. Han, D. J. Srolovitz, and M. Haataja, “Dynamic Phase Engineering of Bendable Transition Metal Dichalcogenide Monolayers”, Nano Letters (2017).

Lipid bilayer membranes
- M. Haataja, “Lipid Domain Co-localization Induced by Membrane Undulations”, Biophysical Journal 112, 655–662 (2017).
- M. C. Blosser, A. R. Honerkamp-Smith, T. Han, M. Haataja, and S. L. Keller, “Transbilayer colocalization of lipid domains explained via measurement of strong coupling parameters”, Biophysical Journal, 109, 2317 (2015).
- T. Han, T. Bailey, and M. Haataja, “Hydrodynamic interaction between overlapping domains during recurrence of registration within planar lipid bilayer membranes”, Physical Review E 89, 032717 (2014).
- T. Han and M. Haataja, “Compositional interface dynamics in symmetric and asymmetric planar lipid bilayer membranes”, Soft Matter 9 (2013).
- T. Han and M. Haataja, “Comprehensive analysis of compositional interface fluctuations in planar lipid bilayer membranes”, Phys. Rev. E 84, 051903 (2011).
- J. Fan, M. Sammalkorpi, and M. Haataja, “Influence of Non-Equilibrium Lipid Transport, Membrane Compartmentalization, and Membrane Proteins on the Lateral Organization of the Plasma Membrane”, Phys. Rev. E 81, 011908 (2010).
- J. Fan, M. Sammalkorpi, and M. Haataja, “Lipid microdomains: Structural correlations, fluctuations, and formation mechanisms”, Phys. Rev. Lett. 104, 118101 (2010).
- J. Fan, M. Sammalkorpi, and M. Haataja, “Formation and Regulation of Lipid Microdomains in Cell Membranes: Theory, Modeling, and Speculation”, FEBS Letters 584, 1648 (2010).
- J. Fan, T. Han, and M. Haataja, “Hydrodynamic effects on spinodal decomposition kinetics in planar lipid bilayer membranes”, J. Chem. Phys. 133, 235101 (2010).
- M. Haataja, “Critical Dynamics in Multicomponent Lipid Membranes”, Phys. Rev. E 80, 020902(R) (2009).
- M. Karttunen, M. Haataja, M. Saily, I. Vattulainen, and J. Holopainen, “Lipid domain morphologies in Langmuir monolayer binary systems”, Langmuir 25, 4595 (2009).
- J. Fan, M. Sammalkorpi, and M. Haataja, “Domain formation in the plasma membrane: Roles of non-equilibrium lipid transport and membrane proteins”, Phys. Rev. Lett. 100, 178102 (2008).

Micellar aggregates
- M. Sammalkorpi, S. Sanders, A. Z. Panagiotopoulos, M. Karttunen, and M. Haataja, “Simulations of micellization of sodium hexyl sulfate”, J. Phys. Chem. B 115, 1403 (2011).
- A. Jusufi, A.-P. Hynninen, M. Haataja, and A. Z. Panagiotopoulos, “Electrostatic screening and charge correlation effects in micellization of ionic surfactants”, JPCB 113, 6314 (2009).
- M. Sammalkorpi, M. Karttunen, and M. Haataja, “Ionic surfactants in saline solutions: Sodium Dodecyl Sulphate (SDS) in the presence of excess NaCl or CaCl2”, JPCB 113, 5863 (2009).
- M. Sammalkorpi, A. Z. Panagiotopoulos, and M. Haataja, “Structure and Dynamics of Surfactant and Hydrocarbon Aggregates on Defective Graphite: A Molecular Dynamics Simulation Study”, J. Phys. Chem B 112, 12954 (2008).
- M. Sammalkorpi, M. Karttunen, and M. Haataja, “Micelle fission via surface instability and formation of an interdigitating stalk”, J. Am. Chem. Soc. 130, 17977 (2008).
- M. Sammalkorpi, A. Z. Panagiotopoulos, and M. Haataja, “Structure and dynamics of surfactant and hydrocarbon aggregates on graphite: a molecular dynamics study”, J. Phys. Chem. B 112, 2915 (2008).
- M. Sammalkorpi, M. Karttunen, and M. Haataja, “Structural properties of ionic detergent aggregates: a large-scale molecular dynamics study of sodium dodecyl sulfate”, J. Phys. Chem. B 111, 11722 (2007).

Solid oxide fuel cells and batteries
- X. M. Liu, A. Fang, M. Haataja, and C. B. Arnold, “Size Dependence of Transport Non-uniformities on Localized Plating in Lithium-ion Batteries”, Journal of The Electrochemical Society 165, A1147 (2018).
- R. Davis, M. Haataja, “Microstructural stability of supported metal catalysts: A phase field approach”, Journal of Power Sources 369, 111-121 (2017).
- F. Abdeljawad, B. Voelker, R. Davis, R. McMeeking, and M. Haataja, “Connecting microstructural coarsening processes to electrochemical performance in solid oxide fuel cells: An integrated modeling approach”, Journal of Power Sources 250 (2014).
- R. Davis, F. Abdeljawad, J. Lillibridge, and M. Haataja, “Phase wettability and microstructural evolution in solid oxide fuel cells anode materials”, Acta Materialia 78, 271-81 (2014).
- F. Abdeljawad and M. Haataja, “Microstructural coarsening effects on redox instability and mechanical damage in solid oxide fuel cell anodes”, Journal of Applied Physics 114 (2013).
- F. Abdeljawad, G. Nelson, W. K. S. Chiu, and M. Haataja, “Redox Instability, Mechanical Deformation, and Heterogeneous Damage Accumulation in Solid Oxide Fuel Cell Anodes”, J. Appl. Phys. 112, 036102 (2012).

Organic semiconductor and polymer thin films
- J. X. Liu, N. Bizmark, D. M. Scott, R. Register, M. P. Haataja, S. S. Datta, C. B. Arnold, and R. D. Priestley, “Evolution of polymer colloid structure during precipitation and phase separation”, JACS Au (2021).
- A. Fang, A. K. Hailey, A. Grosskopf, J. E. Anthony, Y.-L. Loo, and M. Haataja, “Capillary effects in guided crystallization of organic thin films”, APL Materials, 3, 036107 (2015).
- A. Fang and M. Haataja, “Simulation study of twisted crystal growth in organic thin films”, Physical Review E 92, 042404 (2015).
- A. Fang and M. Haataja, “Crystallization in organic semiconductor thin films: A diffuse-interface approach”, Physical Review E 89, 022407 (2014).
- S. Lee, S. Muralidharan, A. Woll, M. Loth, Z. Li, J. Anthony, M. Haataja, and Y.-L. Loo, “Understanding heterogeneous nucleation in solution-processed, organic semiconductor thin films”, Chemistry of Materials 24, 2920 (2012).

Phase-field crystal models
- S. Muralidharan, R. Khodadad, E. Sullivan, and M. Haataja, “Multilayer Thin Film Growth on Crystalline and Quasicrystalline Surfaces: A Phase-field Crystal Study”, Phys. Rev. B 85, 245428 (2012).
- M. Haataja, L. Granasyi, and H. Lowen, “Classical density functional theory methods in soft and hard matter”, J. Phys. Cond. Matt. 22, 360301 (2010).
- S. Muralidharan and M. Haataja, “Phase-field crystal modeling of compositional domain formation in ultrathin films”, Phys. Rev. Lett. 105, 126101 (2010).
- P. Stefanovic, M. Haataja, and N. Provatas, “Phase field crystal study of deformation and plasticity in nanocrystalline materials”, Phys. Rev. E 80, 046107 (2009).
- P. Stefanovic, M. Haataja, and N. Provatas, “Phase-field Crystals with Elastic Interactions”, Phys. Rev. Lett. 96, 225504 (2006).
- K. Elder, M. Katakowski, M. Haataja, and M. Grant, “Modeling Elasticity in crystal growth”, Phys. Rev. Lett. 88, 245701 (2002).

Bulk metallic glasses
- A. Zaheri, F. Abdeljawad, and M. Haataja, “Simulation study of mechanical properties of bulk metallic glass systems: martensitic inclusions and twinned precipitates”, Modelling and Simulation in Materials Science and Engineering 22 (2014).
- F. Abdeljawad, M. Fontus, and M. Haataja, “Ductility of Bulk Metallic Glass Composites: Microstructural Effects”, Applied Physics Letters 98, 031909 (2011).
- F. Abdeljawad and M. Haataja, “Continuum modeling of bulk metallic glasses and composites”, Phys. Rev. Lett. 105, 125503 (2010).
Misfitting thin films
- J. J. Hoyt and M. Haataja, “Continuum model of irradiation-induced spinodal decomposition in the presence of dislocations”, Phys. Rev. B 83, 174106 (2011).
- F. Leonard and M. Haataja, “Alloy destabilization by dislocations”, Appl. Phys. Lett. 86, 181909 (2005).
- M. Haataja, J. Mahon, N. Provatas, and F. Leonard, “Scaling of domain size during spinodal decomposition: dislocation discreteness and mobility effects”, Appl. Phys. Lett. 87, 251901 (2005).
- M. Haataja and F. Leonard, “Spinodal decomposition in the presence of mobile dislocations”, Phys. Rev. B 69, 081201 (2004).
- M. Haataja J. Muller, A. D. Rutenberg, and Martin Grant, “Dislocations and morphological instabilities: Continuum modeling of misfitting heteroepitaxial films”, Phys. Rev. B 65, 165414 (2002).
- M. Haataja J. Muller, A. D. Rutenberg, and Martin Grant, “Dynamics of dislocations and surface instabilities in misfitting heteroepitaxial films”, Phys. Rev. B 65, 035401 (2001).

Miscellaneous papers
- Z. Chen, Q. Guo, C. Majidi, W. Chen, D. J. Srolovitz, and M. Haataja, “Nonlinear geometric effects in mechanical bistable morphing structures”, Phys. Rev. Lett. 109, 114302 (2012).
- S. Jia, M. Haataja, and J. W. Fleischer, “Rayleigh-Taylor instability in nonlinear Schroedinger flow”, New Journal of Physics 14, 075009 (2012).
- A. Lim, M. Haataja, W. Cai, and D. J. Srolovitz, “Stress-driven migration of simple low-angle mixed grain boundaries”, Acta Materialia 60, 1395 (2012).
- Z. Chen, C. Majidi, D. J. Srolovitz, and M. Haataja, “Tunable Helical Ribbons”, Applied Physics Letters 98, 011906 (2011).
- C. Majidi, Z. Chen, D. J. Srolovitz, and M. Haataja, “Theory for the Spontaneous Bending of Piezoelectric Nanoribbons: Mechanics, Spontaneous Polarization, and Space Charge Coupling”, Journal of Mechanics and Physics of Solids 58, 73 (2010).
- C. Majidi, M. Haataja, and D. J. Srolovitz, “Analysis and design principles for shear-mode piezoelectric energy harvesting”, Smart Materials and Structures 19, 055027 (2010).
- Z. Chen, K. T. Chu, D. J. Srolovitz, J. M. Rickman, and M. Haataja, “Dislocation climb strengthening in systems with immobile obstacles: Three-dimensional level-set simulation study”, Phys. Rev. B 81, 054104 (2010).
- D. Van Valen, M. Haataja, and R. Phillips, “Tether length dependence of signal integration proteins”, Biophysical Journal 96, 1275 (2009).
- A. T. Lim, M. Haataja, and D. J. Srolovitz, “Low-Angle Grain Boundary Migration in the Presence of Extrinsic Dislocations”, Acta Materialia 57, 5013 (2009).
- B. E. Sonday, M. Haataja, and Y. Kevrekidis, “Coarse-graining the dynamics of a driven interface in the presence of mobile impurities: Effective description via diffusion maps”, Phys. Rev. E 80, 031102 (2009).
- J. Rickman, M. Haataja, and R. LeSar, “Impact of Obstacles on Dislocation Patterning”, Phys. Rev. B 77, 174501 (2008).
- S. Sreekala and M. Haataja, “Recrystallization kinetics: A coupled coarse-grained dislocation density and phase-field approach”, Phys. Rev. B 76, 094109 (2007).
- J. Fan, M. Greenwood, M. Haataja, and N. Provatas, “Phase-field simulations of rapid solidification of binary alloys”, Phys. Rev. E 74, 031602 (2006).
- M. Greenwood, M. Haataja, and N. Provatas, “Crossover scaling of wavelength selection in directional solidification of binary alloys”, Phys. Rev. Lett. 93, 246101 (2004).
- M. Haataja, D. J. Srolovitz, and Y. G. Kevrekidis, “Apparent hysteresis in a driven system with self-organized drag”, Phys. Rev. Lett. 93, 155502 (2004).
- N. Provatas, Q. Wang, M. Haataja, and M. Grant, “Seaweed to Dendrite Transition in Directional Solidification”, Phys. Rev. Lett. 91, 155502 (2003).